Optimal. Leaf size=26 \[ e^x-2 \left (e^4+\frac {3}{x \left (e^{x/21}+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {84 x+e^{x/21} (42+2 x)+e^x \left (7 e^{2 x/21} x^2+14 e^{x/21} x^3+7 x^4\right )}{7 e^{2 x/21} x^2+14 e^{x/21} x^3+7 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {84 x+e^{x/21} (42+2 x)+e^x \left (7 e^{2 x/21} x^2+14 e^{x/21} x^3+7 x^4\right )}{7 x^2 \left (e^{x/21}+x\right )^2} \, dx\\ &=\frac {1}{7} \int \frac {84 x+e^{x/21} (42+2 x)+e^x \left (7 e^{2 x/21} x^2+14 e^{x/21} x^3+7 x^4\right )}{x^2 \left (e^{x/21}+x\right )^2} \, dx\\ &=\frac {1}{7} \int \left (7 e^x-\frac {2 (-21+x)}{x \left (e^{x/21}+x\right )^2}+\frac {2 (21+x)}{x^2 \left (e^{x/21}+x\right )}\right ) \, dx\\ &=-\left (\frac {2}{7} \int \frac {-21+x}{x \left (e^{x/21}+x\right )^2} \, dx\right )+\frac {2}{7} \int \frac {21+x}{x^2 \left (e^{x/21}+x\right )} \, dx+\int e^x \, dx\\ &=e^x-\frac {2}{7} \int \left (\frac {1}{\left (e^{x/21}+x\right )^2}-\frac {21}{x \left (e^{x/21}+x\right )^2}\right ) \, dx+\frac {2}{7} \int \left (\frac {21}{x^2 \left (e^{x/21}+x\right )}+\frac {1}{x \left (e^{x/21}+x\right )}\right ) \, dx\\ &=e^x-\frac {2}{7} \int \frac {1}{\left (e^{x/21}+x\right )^2} \, dx+\frac {2}{7} \int \frac {1}{x \left (e^{x/21}+x\right )} \, dx+6 \int \frac {1}{x \left (e^{x/21}+x\right )^2} \, dx+6 \int \frac {1}{x^2 \left (e^{x/21}+x\right )} \, dx\\ &=e^x+\frac {2}{7} \int \frac {1}{x \left (e^{x/21}+x\right )} \, dx+6 \int \frac {1}{x \left (e^{x/21}+x\right )^2} \, dx+6 \int \frac {1}{x^2 \left (e^{x/21}+x\right )} \, dx-6 \operatorname {Subst}\left (\int \frac {1}{\left (e^x+21 x\right )^2} \, dx,x,\frac {x}{21}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{7} \left (7 e^x-\frac {42}{x \left (e^{x/21}+x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 27, normalized size = 1.04 \begin {gather*} \frac {x^{2} e^{x} + x e^{\left (\frac {22}{21} \, x\right )} - 6}{x^{2} + x e^{\left (\frac {1}{21} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 27, normalized size = 1.04 \begin {gather*} \frac {x^{2} e^{x} + x e^{\left (\frac {22}{21} \, x\right )} - 6}{x^{2} + x e^{\left (\frac {1}{21} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.65
method | result | size |
risch | \({\mathrm e}^{x}-\frac {6}{x \left ({\mathrm e}^{\frac {x}{21}}+x \right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 27, normalized size = 1.04 \begin {gather*} \frac {x^{2} e^{x} + x e^{\left (\frac {22}{21} \, x\right )} - 6}{x^{2} + x e^{\left (\frac {1}{21} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 16, normalized size = 0.62 \begin {gather*} {\mathrm {e}}^x-\frac {6}{x\,\left (x+{\mathrm {e}}^{x/21}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 14, normalized size = 0.54 \begin {gather*} e^{x} - \frac {6}{x^{2} + x e^{\frac {x}{21}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________