Optimal. Leaf size=25 \[ e^{\frac {3+x}{2}}+x \log \left (36-3 e^x+\frac {4}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 5, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6741, 12, 6742, 2194, 2548} \begin {gather*} e^{\frac {x}{2}+\frac {3}{2}}+x \log \left (4 \left (\frac {1}{x}+9\right )-3 e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2548
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8-e^{\frac {3+x}{2}} (-4-36 x)-e^x \left (3 e^{\frac {3+x}{2}} x+6 x^2\right )-\left (-8-72 x+6 e^x x\right ) \log \left (\frac {4+36 x-3 e^x x}{x}\right )}{2 \left (4+36 x-3 e^x x\right )} \, dx\\ &=\frac {1}{2} \int \frac {-8-e^{\frac {3+x}{2}} (-4-36 x)-e^x \left (3 e^{\frac {3+x}{2}} x+6 x^2\right )-\left (-8-72 x+6 e^x x\right ) \log \left (\frac {4+36 x-3 e^x x}{x}\right )}{4+36 x-3 e^x x} \, dx\\ &=\frac {1}{2} \int \left (e^{\frac {3}{2}+\frac {x}{2}}+\frac {8 \left (1+x+9 x^2\right )}{-4-36 x+3 e^x x}+2 \left (x+\log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )\right )\right ) \, dx\\ &=\frac {1}{2} \int e^{\frac {3}{2}+\frac {x}{2}} \, dx+4 \int \frac {1+x+9 x^2}{-4-36 x+3 e^x x} \, dx+\int \left (x+\log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )\right ) \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+\frac {x^2}{2}+4 \int \left (\frac {1}{-4-36 x+3 e^x x}+\frac {x}{-4-36 x+3 e^x x}+\frac {9 x^2}{-4-36 x+3 e^x x}\right ) \, dx+\int \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right ) \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+\frac {x^2}{2}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )+4 \int \frac {1}{-4-36 x+3 e^x x} \, dx+4 \int \frac {x}{-4-36 x+3 e^x x} \, dx+36 \int \frac {x^2}{-4-36 x+3 e^x x} \, dx-\int \frac {-4-3 e^x x^2}{4-3 \left (-12+e^x\right ) x} \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+\frac {x^2}{2}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )+4 \int \frac {1}{-4-36 x+3 e^x x} \, dx+4 \int \frac {x}{-4-36 x+3 e^x x} \, dx+36 \int \frac {x^2}{-4-36 x+3 e^x x} \, dx-\int \left (x+\frac {4 \left (1+x+9 x^2\right )}{-4-36 x+3 e^x x}\right ) \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )+4 \int \frac {1}{-4-36 x+3 e^x x} \, dx+4 \int \frac {x}{-4-36 x+3 e^x x} \, dx-4 \int \frac {1+x+9 x^2}{-4-36 x+3 e^x x} \, dx+36 \int \frac {x^2}{-4-36 x+3 e^x x} \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )+4 \int \frac {1}{-4-36 x+3 e^x x} \, dx+4 \int \frac {x}{-4-36 x+3 e^x x} \, dx-4 \int \left (\frac {1}{-4-36 x+3 e^x x}+\frac {x}{-4-36 x+3 e^x x}+\frac {9 x^2}{-4-36 x+3 e^x x}\right ) \, dx+36 \int \frac {x^2}{-4-36 x+3 e^x x} \, dx\\ &=e^{\frac {3}{2}+\frac {x}{2}}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 28, normalized size = 1.12 \begin {gather*} e^{\frac {3}{2}+\frac {x}{2}}+x \log \left (-3 e^x+4 \left (9+\frac {1}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 33, normalized size = 1.32 \begin {gather*} x \log \left (\frac {{\left (4 \, {\left (9 \, x + 1\right )} e^{3} - 3 \, x e^{\left (x + 3\right )}\right )} e^{\left (-3\right )}}{x}\right ) + e^{\left (\frac {1}{2} \, x + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 25, normalized size = 1.00 \begin {gather*} x \log \left (-\frac {3 \, x e^{x} - 36 \, x - 4}{x}\right ) + e^{\left (\frac {1}{2} \, x + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 179, normalized size = 7.16
method | result | size |
risch | \(x \ln \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )-x \ln \relax (x )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )}{x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )}{x}\right )^{2}}{2}-i \pi x \mathrm {csgn}\left (\frac {i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )}{x}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )}{x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (-\frac {4}{3}+\left ({\mathrm e}^{x}-12\right ) x \right )}{x}\right )^{3}}{2}+i \pi x +x \ln \relax (3)+{\mathrm e}^{\frac {3}{2}+\frac {x}{2}}\) | \(179\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.92, size = 25, normalized size = 1.00 \begin {gather*} x \log \left (-3 \, x e^{x} + 36 \, x + 4\right ) - x \log \relax (x) + e^{\left (\frac {1}{2} \, x + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.37, size = 24, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{\frac {x}{2}+\frac {3}{2}}+x\,\ln \left (\frac {36\,x-3\,x\,{\mathrm {e}}^x+4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 1.08 \begin {gather*} x \log {\left (\frac {- 3 x e^{x} + 36 x + 4}{x} \right )} + e^{\frac {3}{2}} \sqrt {e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________