Optimal. Leaf size=23 \[ 1-x+x \left (e^{e^{e^{\frac {1}{x}-x}}}+\log (2)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+e^{e^{e^{\frac {1-x^2}{x}}}} \left (x+e^{e^{\frac {1-x^2}{x}}+\frac {1-x^2}{x}} \left (-1-x^2\right )\right )+x \log (2)}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{e^{\frac {1-x^2}{x}}}} \left (x+e^{e^{\frac {1-x^2}{x}}+\frac {1-x^2}{x}} \left (-1-x^2\right )\right )+x (-1+\log (2))}{x} \, dx\\ &=\int \left (-1+e^{e^{e^{\frac {1}{x}-x}}}-\frac {e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x} \left (1+x^2\right )}{x}+\log (2)\right ) \, dx\\ &=-x (1-\log (2))+\int e^{e^{e^{\frac {1}{x}-x}}} \, dx-\int \frac {e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x} \left (1+x^2\right )}{x} \, dx\\ &=-x (1-\log (2))+\int e^{e^{e^{\frac {1}{x}-x}}} \, dx-\int \left (\frac {e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x}}{x}+e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x} x\right ) \, dx\\ &=-x (1-\log (2))+\int e^{e^{e^{\frac {1}{x}-x}}} \, dx-\int \frac {e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x}}{x} \, dx-\int e^{e^{e^{\frac {1}{x}-x}}+e^{\frac {1}{x}-x}+\frac {1}{x}-x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 0.83 \begin {gather*} x \left (-1+e^{e^{e^{\frac {1}{x}-x}}}+\log (2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 23, normalized size = 1.00 \begin {gather*} x e^{\left (e^{\left (e^{\left (-\frac {x^{2} - 1}{x}\right )}\right )}\right )} + x \log \relax (2) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x^{2} + 1\right )} e^{\left (-\frac {x^{2} - 1}{x} + e^{\left (-\frac {x^{2} - 1}{x}\right )}\right )} - x\right )} e^{\left (e^{\left (e^{\left (-\frac {x^{2} - 1}{x}\right )}\right )}\right )} - x \log \relax (2) + x}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 1.04
method | result | size |
norman | \(x \left (\ln \relax (2)-1\right )+x \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{\frac {-x^{2}+1}{x}}}}\) | \(24\) |
risch | \(x \ln \relax (2)-x +x \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{-\frac {\left (x -1\right ) \left (x +1\right )}{x}}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 20, normalized size = 0.87 \begin {gather*} x e^{\left (e^{\left (e^{\left (-x + \frac {1}{x}\right )}\right )}\right )} + x \log \relax (2) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 20, normalized size = 0.87 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^{1/x}}}+x\,\left (\ln \relax (2)-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 132.07, size = 19, normalized size = 0.83 \begin {gather*} x e^{e^{e^{\frac {1 - x^{2}}{x}}}} + x \left (-1 + \log {\relax (2 )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________