Optimal. Leaf size=19 \[ \frac {3+x-e^x \log (4 (2+\log (4)))}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {14, 2197} \begin {gather*} \frac {3}{x}-\frac {e^x \log (8+\log (256))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3}{x^2}-\frac {e^x (-1+x) \log (8+\log (256))}{x^2}\right ) \, dx\\ &=\frac {3}{x}-\log (8+\log (256)) \int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {3}{x}-\frac {e^x \log (8+\log (256))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.84 \begin {gather*} -\frac {-3+e^x \log (8+\log (256))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 17, normalized size = 0.89 \begin {gather*} -\frac {e^{x} \log \left (8 \, \log \relax (2) + 8\right ) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 21, normalized size = 1.11 \begin {gather*} -\frac {3 \, e^{x} \log \relax (2) + e^{x} \log \left (\log \relax (2) + 1\right ) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.16
method | result | size |
norman | \(\frac {3+\left (-3 \ln \relax (2)-\ln \left (1+\ln \relax (2)\right )\right ) {\mathrm e}^{x}}{x}\) | \(22\) |
risch | \(\frac {3}{x}-\frac {\left (3 \ln \relax (2)+\ln \left (1+\ln \relax (2)\right )\right ) {\mathrm e}^{x}}{x}\) | \(24\) |
default | \(-\frac {{\mathrm e}^{x} \ln \left (1+\ln \relax (2)\right )}{x}+\frac {3}{x}-\frac {3 \ln \relax (2) {\mathrm e}^{x}}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 30, normalized size = 1.58 \begin {gather*} -{\rm Ei}\relax (x) \log \left (8 \, \log \relax (2) + 8\right ) + \Gamma \left (-1, -x\right ) \log \left (8 \, \log \relax (2) + 8\right ) + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.01, size = 17, normalized size = 0.89 \begin {gather*} -\frac {{\mathrm {e}}^x\,\ln \left (8\,\ln \relax (2)+8\right )-3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 1.05 \begin {gather*} \frac {\left (- 3 \log {\relax (2 )} - \log {\left (\log {\relax (2 )} + 1 \right )}\right ) e^{x}}{x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________