Optimal. Leaf size=28 \[ 4 x^2 \left (-4+\frac {4+x}{e^{e^x}+\frac {4 x}{25}+5 \log (3)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20000 e^{2 e^x} x+1600 x^2+288 x^3+\left (100000 x+5500 x^2\right ) \log (3)-500000 x \log ^2(3)+e^{e^x} \left (20000 x+1100 x^2+e^x \left (-10000 x^2-2500 x^3\right )-200000 x \log (3)\right )}{625 e^{2 e^x}+16 x^2+1000 x \log (3)+15625 \log ^2(3)+e^{e^x} (200 x+6250 \log (3))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (-5000 e^{2 e^x}+72 x^2-625 e^{e^x+x} x (4+x)+25 e^{e^x} (200+11 x-2000 \log (3))+25 x (16+55 \log (3))-25000 \log (3) (-1+\log (243))\right )}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx\\ &=4 \int \frac {x \left (-5000 e^{2 e^x}+72 x^2-625 e^{e^x+x} x (4+x)+25 e^{e^x} (200+11 x-2000 \log (3))+25 x (16+55 \log (3))-25000 \log (3) (-1+\log (243))\right )}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx\\ &=4 \int \left (-\frac {5000 e^{2 e^x} x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}+\frac {72 x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}-\frac {625 e^{e^x+x} x^2 (4+x)}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}+\frac {25 e^{e^x} x (200+11 x-2000 \log (3))}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}+\frac {25 x^2 (16+55 \log (3))}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}-\frac {25000 x \log (3) (-1+\log (243))}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}\right ) \, dx\\ &=100 \int \frac {e^{e^x} x (200+11 x-2000 \log (3))}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+288 \int \frac {x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-2500 \int \frac {e^{e^x+x} x^2 (4+x)}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-20000 \int \frac {e^{2 e^x} x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100 (16+55 \log (3))) \int \frac {x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100000 \log (3) (1-\log (243))) \int \frac {x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx\\ &=100 \int \left (\frac {11 e^{e^x} x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}-\frac {200 e^{e^x} x (-1+10 \log (3))}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}\right ) \, dx+288 \int \frac {x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-2500 \int \left (\frac {4 e^{e^x+x} x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}+\frac {e^{e^x+x} x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2}\right ) \, dx-20000 \int \frac {e^{2 e^x} x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100 (16+55 \log (3))) \int \frac {x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100000 \log (3) (1-\log (243))) \int \frac {x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx\\ &=288 \int \frac {x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+1100 \int \frac {e^{e^x} x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-2500 \int \frac {e^{e^x+x} x^3}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-10000 \int \frac {e^{e^x+x} x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx-20000 \int \frac {e^{2 e^x} x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(20000 (1-10 \log (3))) \int \frac {e^{e^x} x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100 (16+55 \log (3))) \int \frac {x^2}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx+(100000 \log (3) (1-\log (243))) \int \frac {x}{\left (25 e^{e^x}+4 x+125 \log (3)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 91, normalized size = 3.25 \begin {gather*} -\frac {4 x^2 \left (-36 e^x x^2+x \left (36+400 e^{e^x+x}+25 e^x (-16+35 \log (3))\right )+100 \left (-4+125 e^x \log (3)\right ) \left (-1+e^{e^x}+\log (243)\right )\right )}{\left (25 e^{e^x}+4 x+125 \log (3)\right ) \left (-4+e^x (4 x+125 \log (3))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 43, normalized size = 1.54 \begin {gather*} \frac {4 \, {\left (9 \, x^{3} - 100 \, x^{2} e^{\left (e^{x}\right )} - 500 \, x^{2} \log \relax (3) + 100 \, x^{2}\right )}}{4 \, x + 25 \, e^{\left (e^{x}\right )} + 125 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 43, normalized size = 1.54 \begin {gather*} \frac {4 \, {\left (9 \, x^{3} - 100 \, x^{2} e^{\left (e^{x}\right )} - 500 \, x^{2} \log \relax (3) + 100 \, x^{2}\right )}}{4 \, x + 25 \, e^{\left (e^{x}\right )} + 125 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 30, normalized size = 1.07
method | result | size |
risch | \(-16 x^{2}+\frac {100 x^{2} \left (4+x \right )}{4 x +125 \ln \relax (3)+25 \,{\mathrm e}^{{\mathrm e}^{x}}}\) | \(30\) |
norman | \(\frac {\left (400-2000 \ln \relax (3)\right ) x^{2}+36 x^{3}-400 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}}{4 x +125 \ln \relax (3)+25 \,{\mathrm e}^{{\mathrm e}^{x}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 42, normalized size = 1.50 \begin {gather*} \frac {4 \, {\left (9 \, x^{3} - 100 \, x^{2} {\left (5 \, \log \relax (3) - 1\right )} - 100 \, x^{2} e^{\left (e^{x}\right )}\right )}}{4 \, x + 25 \, e^{\left (e^{x}\right )} + 125 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \relax (3)\,\left (5500\,x^2+100000\,x\right )+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (20000\,x-{\mathrm {e}}^x\,\left (2500\,x^3+10000\,x^2\right )-200000\,x\,\ln \relax (3)+1100\,x^2\right )-20000\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}-500000\,x\,{\ln \relax (3)}^2+1600\,x^2+288\,x^3}{625\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+1000\,x\,\ln \relax (3)+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (200\,x+6250\,\ln \relax (3)\right )+15625\,{\ln \relax (3)}^2+16\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 29, normalized size = 1.04 \begin {gather*} - 16 x^{2} + \frac {100 x^{3} + 400 x^{2}}{4 x + 25 e^{e^{x}} + 125 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________