Optimal. Leaf size=19 \[ -x+3 x^4 (x+\log (-9+x+\log (2 x))) \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-x+3 x^3-132 x^4+15 x^5+\left (-1+15 x^4\right ) \log (2 x)+\left (-108 x^3+12 x^4+12 x^3 \log (2 x)\right ) \log (-9+x+\log (2 x))}{-9+x+\log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {9}{-9+x+\log (2 x)}-\frac {x}{-9+x+\log (2 x)}+\frac {3 x^3}{-9+x+\log (2 x)}-\frac {132 x^4}{-9+x+\log (2 x)}+\frac {15 x^5}{-9+x+\log (2 x)}+\frac {\left (-1+15 x^4\right ) \log (2 x)}{-9+x+\log (2 x)}+12 x^3 \log (-9+x+\log (2 x))\right ) \, dx\\ &=3 \int \frac {x^3}{-9+x+\log (2 x)} \, dx+9 \int \frac {1}{-9+x+\log (2 x)} \, dx+12 \int x^3 \log (-9+x+\log (2 x)) \, dx+15 \int \frac {x^5}{-9+x+\log (2 x)} \, dx-132 \int \frac {x^4}{-9+x+\log (2 x)} \, dx-\int \frac {x}{-9+x+\log (2 x)} \, dx+\int \frac {\left (-1+15 x^4\right ) \log (2 x)}{-9+x+\log (2 x)} \, dx\\ &=3 \int \frac {x^3}{-9+x+\log (2 x)} \, dx+9 \int \frac {1}{-9+x+\log (2 x)} \, dx+12 \int x^3 \log (-9+x+\log (2 x)) \, dx+15 \int \frac {x^5}{-9+x+\log (2 x)} \, dx-132 \int \frac {x^4}{-9+x+\log (2 x)} \, dx-\int \frac {x}{-9+x+\log (2 x)} \, dx+\int \left (-1+15 x^4+\frac {-9+x+135 x^4-15 x^5}{-9+x+\log (2 x)}\right ) \, dx\\ &=-x+3 x^5+3 \int \frac {x^3}{-9+x+\log (2 x)} \, dx+9 \int \frac {1}{-9+x+\log (2 x)} \, dx+12 \int x^3 \log (-9+x+\log (2 x)) \, dx+15 \int \frac {x^5}{-9+x+\log (2 x)} \, dx-132 \int \frac {x^4}{-9+x+\log (2 x)} \, dx-\int \frac {x}{-9+x+\log (2 x)} \, dx+\int \frac {-9+x+135 x^4-15 x^5}{-9+x+\log (2 x)} \, dx\\ &=-x+3 x^5+3 \int \frac {x^3}{-9+x+\log (2 x)} \, dx+9 \int \frac {1}{-9+x+\log (2 x)} \, dx+12 \int x^3 \log (-9+x+\log (2 x)) \, dx+15 \int \frac {x^5}{-9+x+\log (2 x)} \, dx-132 \int \frac {x^4}{-9+x+\log (2 x)} \, dx-\int \frac {x}{-9+x+\log (2 x)} \, dx+\int \left (-\frac {9}{-9+x+\log (2 x)}+\frac {x}{-9+x+\log (2 x)}+\frac {135 x^4}{-9+x+\log (2 x)}-\frac {15 x^5}{-9+x+\log (2 x)}\right ) \, dx\\ &=-x+3 x^5+3 \int \frac {x^3}{-9+x+\log (2 x)} \, dx+12 \int x^3 \log (-9+x+\log (2 x)) \, dx-132 \int \frac {x^4}{-9+x+\log (2 x)} \, dx+135 \int \frac {x^4}{-9+x+\log (2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 1.16 \begin {gather*} -x+3 x^5+3 x^4 \log (-9+x+\log (2 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 22, normalized size = 1.16 \begin {gather*} 3 \, x^{5} + 3 \, x^{4} \log \left (x + \log \left (2 \, x\right ) - 9\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 22, normalized size = 1.16 \begin {gather*} 3 \, x^{5} + 3 \, x^{4} \log \left (x + \log \left (2 \, x\right ) - 9\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 1.21
method | result | size |
risch | \(3 x^{5}+3 x^{4} \ln \left (\ln \left (2 x \right )+x -9\right )-x\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 22, normalized size = 1.16 \begin {gather*} 3 \, x^{5} + 3 \, x^{4} \log \left (x + \log \relax (2) + \log \relax (x) - 9\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 22, normalized size = 1.16 \begin {gather*} 3\,x^4\,\ln \left (x+\ln \left (2\,x\right )-9\right )-x+3\,x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 1.05 \begin {gather*} 3 x^{5} + 3 x^{4} \log {\left (x + \log {\left (2 x \right )} - 9 \right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________