Optimal. Leaf size=38 \[ e^{2 e^{\frac {-\frac {2 e^2}{x}+\log ^2\left (4-\frac {-2+x}{x}\right )}{x}}-\frac {2 x}{5}} \]
________________________________________________________________________________________
Rubi [A] time = 3.06, antiderivative size = 40, normalized size of antiderivative = 1.05, number of steps used = 2, number of rules used = 2, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {1593, 6706} \begin {gather*} \exp \left (\frac {2}{5} \left (5 e^{-\frac {2 e^2-x \log ^2\left (\frac {3 x+2}{x}\right )}{x^2}}-x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {2}{5} \left (5 e^{\frac {-2 e^2+x \log ^2\left (\frac {2+3 x}{x}\right )}{x^2}}-x\right )\right ) \left (-4 x^3-6 x^4+e^{\frac {-2 e^2+x \log ^2\left (\frac {2+3 x}{x}\right )}{x^2}} \left (e^2 (80+120 x)-40 x \log \left (\frac {2+3 x}{x}\right )+\left (-20 x-30 x^2\right ) \log ^2\left (\frac {2+3 x}{x}\right )\right )\right )}{x^3 (10+15 x)} \, dx\\ &=\exp \left (\frac {2}{5} \left (5 e^{-\frac {2 e^2-x \log ^2\left (\frac {2+3 x}{x}\right )}{x^2}}-x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 35, normalized size = 0.92 \begin {gather*} e^{2 e^{-\frac {2 e^2}{x^2}+\frac {\log ^2\left (3+\frac {2}{x}\right )}{x}}-\frac {2 x}{5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 31, normalized size = 0.82 \begin {gather*} e^{\left (-\frac {2}{5} \, x + 2 \, e^{\left (\frac {x \log \left (\frac {3 \, x + 2}{x}\right )^{2} - 2 \, e^{2}}{x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 23.86, size = 30, normalized size = 0.79 \begin {gather*} e^{\left (-\frac {2}{5} \, x + 2 \, e^{\left (\frac {\log \left (\frac {2}{x} + 3\right )^{2}}{x} - \frac {2 \, e^{2}}{x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 34, normalized size = 0.89
method | result | size |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{-\frac {-x \ln \left (\frac {3 x +2}{x}\right )^{2}+2 \,{\mathrm e}^{2}}{x^{2}}}-\frac {2 x}{5}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2}{5} \, \int \frac {{\left (3 \, x^{4} + 2 \, x^{3} + 5 \, {\left ({\left (3 \, x^{2} + 2 \, x\right )} \log \left (\frac {3 \, x + 2}{x}\right )^{2} - 4 \, {\left (3 \, x + 2\right )} e^{2} + 4 \, x \log \left (\frac {3 \, x + 2}{x}\right )\right )} e^{\left (\frac {x \log \left (\frac {3 \, x + 2}{x}\right )^{2} - 2 \, e^{2}}{x^{2}}\right )}\right )} e^{\left (-\frac {2}{5} \, x + 2 \, e^{\left (\frac {x \log \left (\frac {3 \, x + 2}{x}\right )^{2} - 2 \, e^{2}}{x^{2}}\right )}\right )}}{3 \, x^{4} + 2 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.72, size = 33, normalized size = 0.87 \begin {gather*} {\mathrm {e}}^{-\frac {2\,x}{5}}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^2}{x^2}}\,{\mathrm {e}}^{\frac {{\ln \left (\frac {3\,x+2}{x}\right )}^2}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.50, size = 29, normalized size = 0.76 \begin {gather*} e^{- \frac {2 x}{5} + 2 e^{\frac {x \log {\left (\frac {3 x + 2}{x} \right )}^{2} - 2 e^{2}}{x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________