Optimal. Leaf size=28 \[ \log \left (-5+\frac {x \log (x)}{x+\left (-x+x^2\right )^2}+x (x+4 \log (x))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+5 x+8 x^2-7 x^3-14 x^4+20 x^5-4 x^6-4 x^7+2 x^8+\left (3 x+12 x^2-15 x^3-8 x^4+24 x^5-16 x^6+4 x^7\right ) \log (x)}{-5 x-10 x^2+16 x^3+12 x^4-33 x^5+18 x^6+x^7-4 x^8+x^9+\left (x+5 x^2+6 x^3-11 x^4-8 x^5+24 x^6-16 x^7+4 x^8\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1-5 x-8 x^2+7 x^3+14 x^4-20 x^5+4 x^6+4 x^7-2 x^8-\left (3 x+12 x^2-15 x^3-8 x^4+24 x^5-16 x^6+4 x^7\right ) \log (x)}{x \left (1+x-2 x^2+x^3\right ) \left (5+5 x-11 x^2+4 x^3+2 x^4-x^5-\log (x)-4 x \log (x)-4 x^2 \log (x)+8 x^3 \log (x)-4 x^4 \log (x)\right )} \, dx\\ &=\int \left (\frac {3+12 x-15 x^2-8 x^3+24 x^4-16 x^5+4 x^6}{\left (1+x-2 x^2+x^3\right ) \left (1+4 x+4 x^2-8 x^3+4 x^4\right )}+\frac {1+23 x+86 x^2-52 x^3-80 x^4+81 x^5+8 x^6-20 x^7+4 x^9}{x \left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}\right ) \, dx\\ &=\int \frac {3+12 x-15 x^2-8 x^3+24 x^4-16 x^5+4 x^6}{\left (1+x-2 x^2+x^3\right ) \left (1+4 x+4 x^2-8 x^3+4 x^4\right )} \, dx+\int \frac {1+23 x+86 x^2-52 x^3-80 x^4+81 x^5+8 x^6-20 x^7+4 x^9}{x \left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx\\ &=\int \left (\frac {-1+4 x-3 x^2}{1+x-2 x^2+x^3}+\frac {4 \left (1+2 x-6 x^2+4 x^3\right )}{1+4 x+4 x^2-8 x^3+4 x^4}\right ) \, dx+\int \left (\frac {10}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)}+\frac {1}{x \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}-\frac {5 x}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)}-\frac {2 x^2}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)}+\frac {2 x^3}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)}+\frac {x^4}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)}+\frac {9+47 x-62 x^2+22 x^3}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx\right )+2 \int \frac {x^3}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+4 \int \frac {1+2 x-6 x^2+4 x^3}{1+4 x+4 x^2-8 x^3+4 x^4} \, dx-5 \int \frac {x}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+10 \int \frac {1}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+\int \frac {-1+4 x-3 x^2}{1+x-2 x^2+x^3} \, dx+\int \frac {1}{x \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+\int \frac {x^4}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+\int \frac {9+47 x-62 x^2+22 x^3}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx\\ &=-\log \left (1+x-2 x^2+x^3\right )+\log \left (1+4 x+4 x^2-8 x^3+4 x^4\right )-2 \int \frac {x^2}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+2 \int \frac {x^3}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx-5 \int \frac {x}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+10 \int \frac {1}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+\int \frac {1}{x \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+\int \frac {x^4}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+\int \left (\frac {9}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}+\frac {47 x}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}-\frac {62 x^2}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}+\frac {22 x^3}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )}\right ) \, dx\\ &=-\log \left (1+x-2 x^2+x^3\right )+\log \left (1+4 x+4 x^2-8 x^3+4 x^4\right )-2 \int \frac {x^2}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+2 \int \frac {x^3}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx-5 \int \frac {x}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+9 \int \frac {1}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+10 \int \frac {1}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx+22 \int \frac {x^3}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+47 \int \frac {x}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx-62 \int \frac {x^2}{\left (1+4 x+4 x^2-8 x^3+4 x^4\right ) \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+\int \frac {1}{x \left (-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)\right )} \, dx+\int \frac {x^4}{-5-5 x+11 x^2-4 x^3-2 x^4+x^5+\log (x)+4 x \log (x)+4 x^2 \log (x)-8 x^3 \log (x)+4 x^4 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 71, normalized size = 2.54 \begin {gather*} -\log \left (1+x-2 x^2+x^3\right )+\log \left (5+5 x-11 x^2+4 x^3+2 x^4-x^5-\log (x)-4 x \log (x)-4 x^2 \log (x)+8 x^3 \log (x)-4 x^4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 106, normalized size = 3.79 \begin {gather*} \log \left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1\right ) - \log \left (x^{3} - 2 \, x^{2} + x + 1\right ) + \log \left (\frac {x^{5} - 2 \, x^{4} - 4 \, x^{3} + 11 \, x^{2} + {\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1\right )} \log \relax (x) - 5 \, x - 5}{4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.52, size = 67, normalized size = 2.39 \begin {gather*} \log \left (x^{5} + 4 \, x^{4} \log \relax (x) - 2 \, x^{4} - 8 \, x^{3} \log \relax (x) - 4 \, x^{3} + 4 \, x^{2} \log \relax (x) + 11 \, x^{2} + 4 \, x \log \relax (x) - 5 \, x + \log \relax (x) - 5\right ) - \log \left (x^{3} - 2 \, x^{2} + x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 68, normalized size = 2.43
method | result | size |
norman | \(-\ln \left (x^{3}-2 x^{2}+x +1\right )+\ln \left (x^{5}+4 x^{4} \ln \relax (x )-2 x^{4}-8 x^{3} \ln \relax (x )-4 x^{3}+4 x^{2} \ln \relax (x )+11 x^{2}+4 x \ln \relax (x )-5 x +\ln \relax (x )-5\right )\) | \(68\) |
risch | \(-\ln \left (x^{3}-2 x^{2}+x +1\right )+\ln \left (4 x^{4}-8 x^{3}+4 x^{2}+4 x +1\right )+\ln \left (\ln \relax (x )+\frac {x^{5}-2 x^{4}-4 x^{3}+11 x^{2}-5 x -5}{4 x^{4}-8 x^{3}+4 x^{2}+4 x +1}\right )\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 106, normalized size = 3.79 \begin {gather*} \log \left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1\right ) - \log \left (x^{3} - 2 \, x^{2} + x + 1\right ) + \log \left (\frac {x^{5} - 2 \, x^{4} - 4 \, x^{3} + 11 \, x^{2} + {\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1\right )} \log \relax (x) - 5 \, x - 5}{4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, x + 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {5\,x+\ln \relax (x)\,\left (4\,x^7-16\,x^6+24\,x^5-8\,x^4-15\,x^3+12\,x^2+3\,x\right )+8\,x^2-7\,x^3-14\,x^4+20\,x^5-4\,x^6-4\,x^7+2\,x^8+1}{\ln \relax (x)\,\left (4\,x^8-16\,x^7+24\,x^6-8\,x^5-11\,x^4+6\,x^3+5\,x^2+x\right )-5\,x-10\,x^2+16\,x^3+12\,x^4-33\,x^5+18\,x^6+x^7-4\,x^8+x^9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.25, size = 83, normalized size = 2.96 \begin {gather*} \log {\left (\log {\relax (x )} + \frac {x^{5} - 2 x^{4} - 4 x^{3} + 11 x^{2} - 5 x - 5}{4 x^{4} - 8 x^{3} + 4 x^{2} + 4 x + 1} \right )} - \log {\left (x^{3} - 2 x^{2} + x + 1 \right )} + \log {\left (4 x^{4} - 8 x^{3} + 4 x^{2} + 4 x + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________