3.17.2 200+200log(x)+x2log2(x)x2log2(x)dx

Optimal. Leaf size=12 2+x200xlog(x)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 11, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 4, integrand size = 22, number of rulesintegrand size = 0.182, Rules used = {6742, 2306, 2309, 2178} x200xlog(x)

Antiderivative was successfully verified.

[In]

Int[(200 + 200*Log[x] + x^2*Log[x]^2)/(x^2*Log[x]^2),x]

[Out]

x - 200/(x*Log[x])

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(1+200x2log2(x)+200x2log(x))dx=x+2001x2log2(x)dx+2001x2log(x)dx=x200xlog(x)2001x2log(x)dx+200Subst(exxdx,x,log(x))=x+200Ei(log(x))200xlog(x)200Subst(exxdx,x,log(x))=x200xlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 11, normalized size = 0.92 x200xlog(x)

Antiderivative was successfully verified.

[In]

Integrate[(200 + 200*Log[x] + x^2*Log[x]^2)/(x^2*Log[x]^2),x]

[Out]

x - 200/(x*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 16, normalized size = 1.33 x2log(x)200xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+200*log(x)+200)/x^2/log(x)^2,x, algorithm="fricas")

[Out]

(x^2*log(x) - 200)/(x*log(x))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 11, normalized size = 0.92 x200xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+200*log(x)+200)/x^2/log(x)^2,x, algorithm="giac")

[Out]

x - 200/(x*log(x))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 12, normalized size = 1.00




method result size



default x200xln(x) 12
risch x200xln(x) 12
norman 200+x2ln(x)xln(x) 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*ln(x)^2+200*ln(x)+200)/x^2/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

x-200/x/ln(x)

________________________________________________________________________________________

maxima [C]  time = 0.45, size = 15, normalized size = 1.25 x+200Ei(log(x))200Γ(1,log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+200*log(x)+200)/x^2/log(x)^2,x, algorithm="maxima")

[Out]

x + 200*Ei(-log(x)) - 200*gamma(-1, log(x))

________________________________________________________________________________________

mupad [B]  time = 1.05, size = 11, normalized size = 0.92 x200xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((200*log(x) + x^2*log(x)^2 + 200)/(x^2*log(x)^2),x)

[Out]

x - 200/(x*log(x))

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 7, normalized size = 0.58 x200xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2*ln(x)**2+200*ln(x)+200)/x**2/ln(x)**2,x)

[Out]

x - 200/(x*log(x))

________________________________________________________________________________________