3.17.3 4x+(3+x)log(3+x)log(log4(3+x))(9+3x)log(3+x)log2(log4(3+x))dx

Optimal. Leaf size=14 x3log(log4(3+x))

________________________________________________________________________________________

Rubi [F]  time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4x+(3+x)log(3+x)log(log4(3+x))(9+3x)log(3+x)log2(log4(3+x))dx

Verification is not applicable to the result.

[In]

Int[(-4*x + (3 + x)*Log[3 + x]*Log[Log[3 + x]^4])/((9 + 3*x)*Log[3 + x]*Log[Log[3 + x]^4]^2),x]

[Out]

-Log[Log[3 + x]^4]^(-1) - (4*Defer[Subst][Defer[Int][1/(Log[x]*Log[Log[x]^4]^2), x], x, 3 + x])/3 + Defer[Subs
t][Defer[Int][Log[Log[x]^4]^(-1), x], x, 3 + x]/3

Rubi steps

integral=(4x3(3+x)log(3+x)log2(log4(3+x))+13log(log4(3+x)))dx=131log(log4(3+x))dx43x(3+x)log(3+x)log2(log4(3+x))dx=13Subst(1log(log4(x))dx,x,3+x)43(1log(3+x)log2(log4(3+x))3(3+x)log(3+x)log2(log4(3+x)))dx=13Subst(1log(log4(x))dx,x,3+x)431log(3+x)log2(log4(3+x))dx+41(3+x)log(3+x)log2(log4(3+x))dx=1log(log4(3+x))+13Subst(1log(log4(x))dx,x,3+x)43Subst(1log(x)log2(log4(x))dx,x,3+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 14, normalized size = 1.00 x3log(log4(3+x))

Antiderivative was successfully verified.

[In]

Integrate[(-4*x + (3 + x)*Log[3 + x]*Log[Log[3 + x]^4])/((9 + 3*x)*Log[3 + x]*Log[Log[3 + x]^4]^2),x]

[Out]

x/(3*Log[Log[3 + x]^4])

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 12, normalized size = 0.86 x3log(log(x+3)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(3+x)*log(log(3+x)^4)-4*x)/(3*x+9)/log(3+x)/log(log(3+x)^4)^2,x, algorithm="fricas")

[Out]

1/3*x/log(log(x + 3)^4)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 12, normalized size = 0.86 x3log(log(x+3)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(3+x)*log(log(3+x)^4)-4*x)/(3*x+9)/log(3+x)/log(log(3+x)^4)^2,x, algorithm="giac")

[Out]

1/3*x/log(log(x + 3)^4)

________________________________________________________________________________________

maple [A]  time = 0.45, size = 13, normalized size = 0.93




method result size



norman x3ln(ln(3+x)4) 13
risch 2ix3(πcsgn(iln(3+x))2csgn(iln(3+x)2)2πcsgn(iln(3+x))csgn(iln(3+x)2)2+πcsgn(iln(3+x))csgn(iln(3+x)2)csgn(iln(3+x)3)πcsgn(iln(3+x))csgn(iln(3+x)3)2+πcsgn(iln(3+x))csgn(iln(3+x)3)csgn(iln(3+x)4)πcsgn(iln(3+x))csgn(iln(3+x)4)2+πcsgn(iln(3+x)2)3πcsgn(iln(3+x)2)csgn(iln(3+x)3)2+πcsgn(iln(3+x)3)3πcsgn(iln(3+x)3)csgn(iln(3+x)4)2+πcsgn(iln(3+x)4)3+8iln(ln(3+x))) 259



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3+x)*ln(3+x)*ln(ln(3+x)^4)-4*x)/(3*x+9)/ln(3+x)/ln(ln(3+x)^4)^2,x,method=_RETURNVERBOSE)

[Out]

1/3*x/ln(ln(3+x)^4)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 10, normalized size = 0.71 x12log(log(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(3+x)*log(log(3+x)^4)-4*x)/(3*x+9)/log(3+x)/log(log(3+x)^4)^2,x, algorithm="maxima")

[Out]

1/12*x/log(log(x + 3))

________________________________________________________________________________________

mupad [B]  time = 1.42, size = 12, normalized size = 0.86 x3ln(ln(x+3)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x - log(log(x + 3)^4)*log(x + 3)*(x + 3))/(log(log(x + 3)^4)^2*log(x + 3)*(3*x + 9)),x)

[Out]

x/(3*log(log(x + 3)^4))

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 10, normalized size = 0.71 x3log(log(x+3)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*ln(3+x)*ln(ln(3+x)**4)-4*x)/(3*x+9)/ln(3+x)/ln(ln(3+x)**4)**2,x)

[Out]

x/(3*log(log(x + 3)**4))

________________________________________________________________________________________