3.17.4 1024448x+8x2208x3+9x41024x192x2+8x316x4+x5dx

Optimal. Leaf size=26 2+e5+log(x(4+x(4+x2)16x)4)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 2, integrand size = 45, number of rulesintegrand size = 0.044, Rules used = {2074, 1587} 4log(x38x+64)4log(16x)+log(x)

Antiderivative was successfully verified.

[In]

Int[(1024 - 448*x + 8*x^2 - 208*x^3 + 9*x^4)/(1024*x - 192*x^2 + 8*x^3 - 16*x^4 + x^5),x]

[Out]

-4*Log[16 - x] + Log[x] + 4*Log[64 - 8*x - x^3]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

integral=(416+x+1x+4(8+3x2)64+8x+x3)dx=4log(16x)+log(x)+48+3x264+8x+x3dx=4log(16x)+log(x)+4log(648xx3)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 24, normalized size = 0.92 4log(16x)+log(x)+4log(648xx3)

Antiderivative was successfully verified.

[In]

Integrate[(1024 - 448*x + 8*x^2 - 208*x^3 + 9*x^4)/(1024*x - 192*x^2 + 8*x^3 - 16*x^4 + x^5),x]

[Out]

-4*Log[16 - x] + Log[x] + 4*Log[64 - 8*x - x^3]

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 20, normalized size = 0.77 4log(x3+8x64)4log(x16)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((9*x^4-208*x^3+8*x^2-448*x+1024)/(x^5-16*x^4+8*x^3-192*x^2+1024*x),x, algorithm="fricas")

[Out]

4*log(x^3 + 8*x - 64) - 4*log(x - 16) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 23, normalized size = 0.88 4log(|x3+8x64|)4log(|x16|)+log(|x|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((9*x^4-208*x^3+8*x^2-448*x+1024)/(x^5-16*x^4+8*x^3-192*x^2+1024*x),x, algorithm="giac")

[Out]

4*log(abs(x^3 + 8*x - 64)) - 4*log(abs(x - 16)) + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 0.81




method result size



default 4ln(x3+8x64)+ln(x)4ln(x16) 21
norman 4ln(x3+8x64)+ln(x)4ln(x16) 21
risch 4ln(x3+8x64)+ln(x)4ln(x16) 21



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((9*x^4-208*x^3+8*x^2-448*x+1024)/(x^5-16*x^4+8*x^3-192*x^2+1024*x),x,method=_RETURNVERBOSE)

[Out]

4*ln(x^3+8*x-64)+ln(x)-4*ln(x-16)

________________________________________________________________________________________

maxima [A]  time = 0.75, size = 20, normalized size = 0.77 4log(x3+8x64)4log(x16)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((9*x^4-208*x^3+8*x^2-448*x+1024)/(x^5-16*x^4+8*x^3-192*x^2+1024*x),x, algorithm="maxima")

[Out]

4*log(x^3 + 8*x - 64) - 4*log(x - 16) + log(x)

________________________________________________________________________________________

mupad [B]  time = 1.07, size = 20, normalized size = 0.77 4ln(x3+8x64)4ln(x16)+ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x^2 - 448*x - 208*x^3 + 9*x^4 + 1024)/(1024*x - 192*x^2 + 8*x^3 - 16*x^4 + x^5),x)

[Out]

4*log(8*x + x^3 - 64) - 4*log(x - 16) + log(x)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 20, normalized size = 0.77 log(x)4log(x16)+4log(x3+8x64)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((9*x**4-208*x**3+8*x**2-448*x+1024)/(x**5-16*x**4+8*x**3-192*x**2+1024*x),x)

[Out]

log(x) - 4*log(x - 16) + 4*log(x**3 + 8*x - 64)

________________________________________________________________________________________