3.17.8 e8x(48x3+96x4)log(1624e4+9e8+e16xx8+e8x(8x46e4x4))43e4+e8xx4dx

Optimal. Leaf size=23 3log2((43e4+e8xx4)2)

________________________________________________________________________________________

Rubi [A]  time = 1.30, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 4, integrand size = 77, number of rulesintegrand size = 0.052, Rules used = {1593, 6684, 6741, 6686} 3log2((e8xx4+3e44)2)

Antiderivative was successfully verified.

[In]

Int[(E^(8*x)*(48*x^3 + 96*x^4)*Log[16 - 24*E^4 + 9*E^8 + E^(16*x)*x^8 + E^(8*x)*(8*x^4 - 6*E^4*x^4)])/(4 - 3*E
^4 + E^(8*x)*x^4),x]

[Out]

3*Log[(-4 + 3*E^4 - E^(8*x)*x^4)^2]^2

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

integral=e8xx3(48+96x)log(1624e4+9e8+e16xx8+e8x(8x46e4x4))43e4+e8xx4dx=e8xx3(48+96x)log((4(13e44)e8xx4)2)4(13e44)+e8xx4dx=3log2((4+3e4e8xx4)2)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 23, normalized size = 1.00 3log2((43e4+e8xx4)2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(8*x)*(48*x^3 + 96*x^4)*Log[16 - 24*E^4 + 9*E^8 + E^(16*x)*x^8 + E^(8*x)*(8*x^4 - 6*E^4*x^4)])/(4
 - 3*E^4 + E^(8*x)*x^4),x]

[Out]

3*Log[(4 - 3*E^4 + E^(8*x)*x^4)^2]^2

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 42, normalized size = 1.83 3log(x8e(16x)2(3x4e44x4)e(8x)+9e824e4+16)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="fricas")

[Out]

3*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 48(2x4+x3)e(8x)log(x8e(16x)2(3x4e44x4)e(8x)+9e824e4+16)x4e(8x)3e4+4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="giac")

[Out]

integrate(48*(2*x^4 + x^3)*e^(8*x)*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)/(x^
4*e^(8*x) - 3*e^4 + 4), x)

________________________________________________________________________________________

maple [B]  time = 0.43, size = 77, normalized size = 3.35




method result size



default 12(ln((x4e8x+3e44)2)2ln(x4e8x+3e44))ln(x4e8x+3e44)+12ln(x4e8x+3e44)2 77
risch 24ln(3)ln(x4e8x+3e44)+12ln(x4e8x+3e44)26iπln(x4e8x+3e44)csgn(i(x4e8x3+e443))2csgn(i(x4e8x3+e443)2)+12iπln(x4e8x+3e44)csgn(i(x4e8x3+e443))csgn(i(x4e8x3+e443)2)26iπln(x4e8x+3e44)csgn(i(x4e8x3+e443)2)3 199



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((96*x^4+48*x^3)*exp(2*x)^4*ln(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+16)/(x^
4*exp(2*x)^4-3*exp(4)+4),x,method=_RETURNVERBOSE)

[Out]

12*(ln((-x^4*exp(8*x)+3*exp(4)-4)^2)-2*ln(-x^4*exp(8*x)+3*exp(4)-4))*ln(-x^4*exp(8*x)+3*exp(4)-4)+12*ln(-x^4*e
xp(8*x)+3*exp(4)-4)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 48(2x4+x3)e(8x)log(x8e(16x)2(3x4e44x4)e(8x)+9e824e4+16)x4e(8x)3e4+4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="maxima")

[Out]

48*integrate((2*x^4 + x^3)*e^(8*x)*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)/(x^
4*e^(8*x) - 3*e^4 + 4), x)

________________________________________________________________________________________

mupad [B]  time = 1.48, size = 42, normalized size = 1.83 3ln(9e824e4+x8e16xe8x(6x4e48x4)+16)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(8*x)*log(9*exp(8) - 24*exp(4) + x^8*exp(16*x) - exp(8*x)*(6*x^4*exp(4) - 8*x^4) + 16)*(48*x^3 + 96*x^
4))/(x^4*exp(8*x) - 3*exp(4) + 4),x)

[Out]

3*log(9*exp(8) - 24*exp(4) + x^8*exp(16*x) - exp(8*x)*(6*x^4*exp(4) - 8*x^4) + 16)^2

________________________________________________________________________________________

sympy [B]  time = 0.44, size = 42, normalized size = 1.83 3log(x8e16x+(6x4e4+8x4)e8x24e4+16+9e8)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((96*x**4+48*x**3)*exp(2*x)**4*ln(x**8*exp(2*x)**8+(-6*x**4*exp(4)+8*x**4)*exp(2*x)**4+9*exp(4)**2-24
*exp(4)+16)/(x**4*exp(2*x)**4-3*exp(4)+4),x)

[Out]

3*log(x**8*exp(16*x) + (-6*x**4*exp(4) + 8*x**4)*exp(8*x) - 24*exp(4) + 16 + 9*exp(8))**2

________________________________________________________________________________________