Optimal. Leaf size=23 \[ 3 \log ^2\left (\left (4-3 e^4+e^{8 x} x^4\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.30, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 4, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {1593, 6684, 6741, 6686} \begin {gather*} 3 \log ^2\left (\left (-e^{8 x} x^4+3 e^4-4\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6684
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{8 x} x^3 (48+96 x) \log \left (16-24 e^4+9 e^8+e^{16 x} x^8+e^{8 x} \left (8 x^4-6 e^4 x^4\right )\right )}{4-3 e^4+e^{8 x} x^4} \, dx\\ &=\int \frac {e^{8 x} x^3 (48+96 x) \log \left (\left (-4 \left (1-\frac {3 e^4}{4}\right )-e^{8 x} x^4\right )^2\right )}{4 \left (1-\frac {3 e^4}{4}\right )+e^{8 x} x^4} \, dx\\ &=3 \log ^2\left (\left (-4+3 e^4-e^{8 x} x^4\right )^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 1.00 \begin {gather*} 3 \log ^2\left (\left (4-3 e^4+e^{8 x} x^4\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 42, normalized size = 1.83 \begin {gather*} 3 \, \log \left (x^{8} e^{\left (16 \, x\right )} - 2 \, {\left (3 \, x^{4} e^{4} - 4 \, x^{4}\right )} e^{\left (8 \, x\right )} + 9 \, e^{8} - 24 \, e^{4} + 16\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {48 \, {\left (2 \, x^{4} + x^{3}\right )} e^{\left (8 \, x\right )} \log \left (x^{8} e^{\left (16 \, x\right )} - 2 \, {\left (3 \, x^{4} e^{4} - 4 \, x^{4}\right )} e^{\left (8 \, x\right )} + 9 \, e^{8} - 24 \, e^{4} + 16\right )}{x^{4} e^{\left (8 \, x\right )} - 3 \, e^{4} + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.43, size = 77, normalized size = 3.35
method | result | size |
default | \(12 \left (\ln \left (\left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )^{2}\right )-2 \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )\right ) \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )+12 \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )^{2}\) | \(77\) |
risch | \(-24 \ln \relax (3) \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )+12 \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right )^{2}-6 i \pi \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right ) \mathrm {csgn}\left (i \left (-\frac {x^{4} {\mathrm e}^{8 x}}{3}+{\mathrm e}^{4}-\frac {4}{3}\right )\right )^{2} \mathrm {csgn}\left (i \left (-\frac {x^{4} {\mathrm e}^{8 x}}{3}+{\mathrm e}^{4}-\frac {4}{3}\right )^{2}\right )+12 i \pi \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right ) \mathrm {csgn}\left (i \left (-\frac {x^{4} {\mathrm e}^{8 x}}{3}+{\mathrm e}^{4}-\frac {4}{3}\right )\right ) \mathrm {csgn}\left (i \left (-\frac {x^{4} {\mathrm e}^{8 x}}{3}+{\mathrm e}^{4}-\frac {4}{3}\right )^{2}\right )^{2}-6 i \pi \ln \left (-x^{4} {\mathrm e}^{8 x}+3 \,{\mathrm e}^{4}-4\right ) \mathrm {csgn}\left (i \left (-\frac {x^{4} {\mathrm e}^{8 x}}{3}+{\mathrm e}^{4}-\frac {4}{3}\right )^{2}\right )^{3}\) | \(199\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 48 \, \int \frac {{\left (2 \, x^{4} + x^{3}\right )} e^{\left (8 \, x\right )} \log \left (x^{8} e^{\left (16 \, x\right )} - 2 \, {\left (3 \, x^{4} e^{4} - 4 \, x^{4}\right )} e^{\left (8 \, x\right )} + 9 \, e^{8} - 24 \, e^{4} + 16\right )}{x^{4} e^{\left (8 \, x\right )} - 3 \, e^{4} + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 42, normalized size = 1.83 \begin {gather*} 3\,{\ln \left (9\,{\mathrm {e}}^8-24\,{\mathrm {e}}^4+x^8\,{\mathrm {e}}^{16\,x}-{\mathrm {e}}^{8\,x}\,\left (6\,x^4\,{\mathrm {e}}^4-8\,x^4\right )+16\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 42, normalized size = 1.83 \begin {gather*} 3 \log {\left (x^{8} e^{16 x} + \left (- 6 x^{4} e^{4} + 8 x^{4}\right ) e^{8 x} - 24 e^{4} + 16 + 9 e^{8} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________