3.17.8
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [A] time = 1.30, antiderivative size = 24, normalized size of antiderivative = 1.04,
number of steps used = 3, number of rules used = 4, integrand size = 77, = 0.052, Rules used =
{1593, 6684, 6741, 6686}
Antiderivative was successfully verified.
[In]
Int[(E^(8*x)*(48*x^3 + 96*x^4)*Log[16 - 24*E^4 + 9*E^8 + E^(16*x)*x^8 + E^(8*x)*(8*x^4 - 6*E^4*x^4)])/(4 - 3*E
^4 + E^(8*x)*x^4),x]
[Out]
3*Log[(-4 + 3*E^4 - E^(8*x)*x^4)^2]^2
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^(8*x)*(48*x^3 + 96*x^4)*Log[16 - 24*E^4 + 9*E^8 + E^(16*x)*x^8 + E^(8*x)*(8*x^4 - 6*E^4*x^4)])/(4
- 3*E^4 + E^(8*x)*x^4),x]
[Out]
3*Log[(4 - 3*E^4 + E^(8*x)*x^4)^2]^2
________________________________________________________________________________________
fricas [A] time = 0.67, size = 42, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="fricas")
[Out]
3*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)^2
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="giac")
[Out]
integrate(48*(2*x^4 + x^3)*e^(8*x)*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)/(x^
4*e^(8*x) - 3*e^4 + 4), x)
________________________________________________________________________________________
maple [B] time = 0.43, size = 77, normalized size = 3.35
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((96*x^4+48*x^3)*exp(2*x)^4*ln(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+16)/(x^
4*exp(2*x)^4-3*exp(4)+4),x,method=_RETURNVERBOSE)
[Out]
12*(ln((-x^4*exp(8*x)+3*exp(4)-4)^2)-2*ln(-x^4*exp(8*x)+3*exp(4)-4))*ln(-x^4*exp(8*x)+3*exp(4)-4)+12*ln(-x^4*e
xp(8*x)+3*exp(4)-4)^2
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((96*x^4+48*x^3)*exp(2*x)^4*log(x^8*exp(2*x)^8+(-6*x^4*exp(4)+8*x^4)*exp(2*x)^4+9*exp(4)^2-24*exp(4)+
16)/(x^4*exp(2*x)^4-3*exp(4)+4),x, algorithm="maxima")
[Out]
48*integrate((2*x^4 + x^3)*e^(8*x)*log(x^8*e^(16*x) - 2*(3*x^4*e^4 - 4*x^4)*e^(8*x) + 9*e^8 - 24*e^4 + 16)/(x^
4*e^(8*x) - 3*e^4 + 4), x)
________________________________________________________________________________________
mupad [B] time = 1.48, size = 42, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(8*x)*log(9*exp(8) - 24*exp(4) + x^8*exp(16*x) - exp(8*x)*(6*x^4*exp(4) - 8*x^4) + 16)*(48*x^3 + 96*x^
4))/(x^4*exp(8*x) - 3*exp(4) + 4),x)
[Out]
3*log(9*exp(8) - 24*exp(4) + x^8*exp(16*x) - exp(8*x)*(6*x^4*exp(4) - 8*x^4) + 16)^2
________________________________________________________________________________________
sympy [B] time = 0.44, size = 42, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((96*x**4+48*x**3)*exp(2*x)**4*ln(x**8*exp(2*x)**8+(-6*x**4*exp(4)+8*x**4)*exp(2*x)**4+9*exp(4)**2-24
*exp(4)+16)/(x**4*exp(2*x)**4-3*exp(4)+4),x)
[Out]
3*log(x**8*exp(16*x) + (-6*x**4*exp(4) + 8*x**4)*exp(8*x) - 24*exp(4) + 16 + 9*exp(8))**2
________________________________________________________________________________________