Optimal. Leaf size=23 \[ \frac {e}{3 \left (7+25 x^2+\frac {(4+x)^2}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 5, number of rules used = 4, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {12, 1594, 6688, 1588} \begin {gather*} \frac {e x^2}{3 \left (25 x^4+8 x^2+8 x+16\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1588
Rule 1594
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e \int \frac {32 x+8 x^2-50 x^5}{768+768 x+960 x^2+384 x^3+2592 x^4+1200 x^5+1200 x^6+1875 x^8} \, dx\\ &=e \int \frac {x \left (32+8 x-50 x^4\right )}{768+768 x+960 x^2+384 x^3+2592 x^4+1200 x^5+1200 x^6+1875 x^8} \, dx\\ &=e \int \frac {2 x \left (16+4 x-25 x^4\right )}{3 \left (16+8 x+8 x^2+25 x^4\right )^2} \, dx\\ &=\frac {1}{3} (2 e) \int \frac {x \left (16+4 x-25 x^4\right )}{\left (16+8 x+8 x^2+25 x^4\right )^2} \, dx\\ &=\frac {e x^2}{3 \left (16+8 x+8 x^2+25 x^4\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.09 \begin {gather*} \frac {2 e x^2}{3 \left (32+16 x+16 x^2+50 x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 24, normalized size = 1.04 \begin {gather*} \frac {x^{2} e}{3 \, {\left (25 \, x^{4} + 8 \, x^{2} + 8 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 24, normalized size = 1.04 \begin {gather*} \frac {x^{2} e}{3 \, {\left (25 \, x^{4} + 8 \, x^{2} + 8 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 1.00
method | result | size |
default | \(\frac {x^{2} {\mathrm e}}{75 x^{4}+24 x^{2}+24 x +48}\) | \(23\) |
risch | \(\frac {x^{2} {\mathrm e}}{75 x^{4}+24 x^{2}+24 x +48}\) | \(23\) |
gosper | \(\frac {x^{2} {\mathrm e}}{75 x^{4}+24 x^{2}+24 x +48}\) | \(25\) |
norman | \(\frac {-\frac {x \,{\mathrm e}}{3}-\frac {25 x^{4} {\mathrm e}}{24}-\frac {2 \,{\mathrm e}}{3}}{25 x^{4}+8 x^{2}+8 x +16}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 1.04 \begin {gather*} \frac {x^{2} e}{3 \, {\left (25 \, x^{4} + 8 \, x^{2} + 8 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 23, normalized size = 1.00 \begin {gather*} \frac {x^2\,\mathrm {e}}{3\,\left (25\,x^4+8\,x^2+8\,x+16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 20, normalized size = 0.87 \begin {gather*} \frac {e x^{2}}{75 x^{4} + 24 x^{2} + 24 x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________