3.17.12 elog2(2)16xelog2(2)x8x2dx

Optimal. Leaf size=18 log(15x(18elog2(2)+x))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 0.83, number of steps used = 1, number of rules used = 1, integrand size = 27, number of rulesintegrand size = 0.037, Rules used = {628} log(xelog2(2)8x2)

Antiderivative was successfully verified.

[In]

Int[(E^Log[2]^2 - 16*x)/(E^Log[2]^2*x - 8*x^2),x]

[Out]

Log[E^Log[2]^2*x - 8*x^2]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

integral=log(elog2(2)x8x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 0.78 log(elog2(2)8x)+log(x)

Antiderivative was successfully verified.

[In]

Integrate[(E^Log[2]^2 - 16*x)/(E^Log[2]^2*x - 8*x^2),x]

[Out]

Log[E^Log[2]^2 - 8*x] + Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 15, normalized size = 0.83 log(8x2xe(log(2)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(log(2)^2)-16*x)/(x*exp(log(2)^2)-8*x^2),x, algorithm="fricas")

[Out]

log(8*x^2 - x*e^(log(2)^2))

________________________________________________________________________________________

giac [A]  time = 0.22, size = 16, normalized size = 0.89 log(|8x2xe(log(2)2)|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(log(2)^2)-16*x)/(x*exp(log(2)^2)-8*x^2),x, algorithm="giac")

[Out]

log(abs(8*x^2 - x*e^(log(2)^2)))

________________________________________________________________________________________

maple [A]  time = 0.31, size = 13, normalized size = 0.72




method result size



default ln(x(eln(2)28x)) 13
norman ln(x)+ln(eln(2)28x) 14
derivativedivides ln(xeln(2)28x2) 15
risch ln(xeln(2)2+8x2) 16
meijerg ln(18xeln(2)2)+ln(x)+3ln(2)ln(2)2+iπ 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(ln(2)^2)-16*x)/(x*exp(ln(2)^2)-8*x^2),x,method=_RETURNVERBOSE)

[Out]

ln(x*(exp(ln(2)^2)-8*x))

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 15, normalized size = 0.83 log(8x2xe(log(2)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(log(2)^2)-16*x)/(x*exp(log(2)^2)-8*x^2),x, algorithm="maxima")

[Out]

log(8*x^2 - x*e^(log(2)^2))

________________________________________________________________________________________

mupad [B]  time = 1.10, size = 14, normalized size = 0.78 ln(x(8xeln(2)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(16*x - exp(log(2)^2))/(x*exp(log(2)^2) - 8*x^2),x)

[Out]

log(x*(8*x - exp(log(2)^2)))

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 14, normalized size = 0.78 log(8x2xelog(2)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(ln(2)**2)-16*x)/(x*exp(ln(2)**2)-8*x**2),x)

[Out]

log(8*x**2 - x*exp(log(2)**2))

________________________________________________________________________________________