3.17.11
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 2.53, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-2*x^2*Log[x]*Log[(5*E^x*Log[x])/x] + E^10*Log[(5*E^x*Log[x])/x]^2*(-32 - 16*x - 2*x^2 + (32 - 16*x - 14*
x^2 - 2*x^3)*Log[x] + (-8*x - 2*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]) + E^5*Log[(5*E^x*Log[x])/x]*(8*x + 2*x^2 +
(-8*x + 6*x^2 + 2*x^3)*Log[x] + (8*x + 4*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]))/(x*Log[x]*Log[(5*E^x*Log[x])/x]),
x]
[Out]
-8*E^5*x + 16*E^10*x + 8*E^5*(1 - 2*E^5)*x - x^2 + 3*E^5*x^2 + (E^5*(2 - 7*E^5)*x^2)/2 - 4*E^5*(1 - 2*E^5)*x^2
+ (2*E^5*x^3)/3 - (2*E^10*x^3)/9 - (E^5*(2 - 7*E^5)*x^3)/3 + (E^10*x^4)/6 + 2*E^5*ExpIntegralEi[2*Log[x]] - 1
6*E^10*ExpIntegralEi[2*Log[x]] - E^5*(2 - 7*E^5)*ExpIntegralEi[2*Log[x]] + (2*E^10*ExpIntegralEi[3*Log[x]])/3
+ 8*E^5*(1 - 2*E^5)*x*Log[(5*E^x*Log[x])/x] + E^5*(2 - 7*E^5)*x^2*Log[(5*E^x*Log[x])/x] - (2*E^10*x^3*Log[(5*E
^x*Log[x])/x])/3 + 8*E^5*LogIntegral[x] - 8*E^5*(1 - 2*E^5)*LogIntegral[x] + 16*E^10*x*LogIntegral[x] - 16*E^1
0*Log[x]*LogIntegral[x] - 16*E^10*Log[(5*E^x*Log[x])/x]*LogIntegral[x] + 32*E^10*Defer[Int][Log[(5*E^x*Log[x])
/x]/x, x] - 32*E^10*Defer[Int][Log[(5*E^x*Log[x])/x]/(x*Log[x]), x] - 2*E^10*Defer[Int][(x*Log[(5*E^x*Log[x])/
x])/Log[x], x] - 8*E^10*Defer[Int][Log[(5*E^x*Log[x])/x]^2, x] - 2*E^10*Defer[Int][x*Log[(5*E^x*Log[x])/x]^2,
x] + 16*E^10*Defer[Int][LogIntegral[x]/(x*Log[x]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.45, size = 180, normalized size = 6.43
Antiderivative was successfully verified.
[In]
Integrate[(-2*x^2*Log[x]*Log[(5*E^x*Log[x])/x] + E^10*Log[(5*E^x*Log[x])/x]^2*(-32 - 16*x - 2*x^2 + (32 - 16*x
- 14*x^2 - 2*x^3)*Log[x] + (-8*x - 2*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]) + E^5*Log[(5*E^x*Log[x])/x]*(8*x + 2*
x^2 + (-8*x + 6*x^2 + 2*x^3)*Log[x] + (8*x + 4*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]))/(x*Log[x]*Log[(5*E^x*Log[x]
)/x]),x]
[Out]
-x^2 + 16*E^10*x^2 - 16*E^10*Log[Log[x]/x]^2 - 32*E^10*Log[x]*(x + Log[Log[x]/x] - Log[(5*E^x*Log[x])/x]) + 32
*E^10*Log[Log[x]]*(x + Log[Log[x]/x] - Log[(5*E^x*Log[x])/x]) + 8*E^5*x*Log[(5*E^x*Log[x])/x] - 32*E^10*x*Log[
(5*E^x*Log[x])/x] + 2*E^5*x^2*Log[(5*E^x*Log[x])/x] - 8*E^10*x*Log[(5*E^x*Log[x])/x]^2 - E^10*x^2*Log[(5*E^x*L
og[x])/x]^2
________________________________________________________________________________________
fricas [A] time = 0.73, size = 51, normalized size = 1.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="fricas")
[Out]
-(x^2 + 8*x + 16)*e^10*log(5*e^x*log(x)/x)^2 + 2*(x^2 + 4*x)*e^5*log(5*e^x*log(x)/x) - x^2
________________________________________________________________________________________
giac [B] time = 0.38, size = 338, normalized size = 12.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="giac")
[Out]
-x^4*e^10 - 2*x^3*e^10*log(5) - x^2*e^10*log(5)^2 + 2*x^3*e^10*log(x) + 2*x^2*e^10*log(5)*log(x) - x^2*e^10*lo
g(x)^2 - 2*x^3*e^10*log(log(x)) - 2*x^2*e^10*log(5)*log(log(x)) + 2*x^2*e^10*log(x)*log(log(x)) - x^2*e^10*log
(log(x))^2 - 8*x^3*e^10 + 2*x^3*e^5 - 16*x^2*e^10*log(5) + 2*x^2*e^5*log(5) - 8*x*e^10*log(5)^2 + 16*x^2*e^10*
log(x) - 2*x^2*e^5*log(x) + 16*x*e^10*log(5)*log(x) - 8*x*e^10*log(x)^2 - 16*x^2*e^10*log(log(x)) + 2*x^2*e^5*
log(log(x)) - 16*x*e^10*log(5)*log(log(x)) + 16*x*e^10*log(x)*log(log(x)) - 8*x*e^10*log(log(x))^2 - 16*x^2*e^
10 + 8*x^2*e^5 - 32*x*e^10*log(5) + 8*x*e^5*log(5) + 32*x*e^10*log(x) - 8*x*e^5*log(x) + 32*e^10*log(5)*log(x)
- 16*e^10*log(x)^2 - 32*x*e^10*log(log(x)) + 8*x*e^5*log(log(x)) - 32*e^10*log(5)*log(log(x)) + 32*e^10*log(x
)*log(log(x)) - 16*e^10*log(log(x))^2 - x^2
________________________________________________________________________________________
maple [C] time = 1.56, size = 5540, normalized size = 197.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-2*x^2-8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(-2*x^3-14*x^2-16*x+32)*ln(x)-2*x^2-16*x-32)*exp(ln(ln(5*exp(x)*
ln(x)/x))+5)^2+((4*x^2+8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(2*x^3+6*x^2-8*x)*ln(x)+2*x^2+8*x)*exp(ln(ln(5*exp(x)*l
n(x)/x))+5)-2*x^2*ln(x)*ln(5*exp(x)*ln(x)/x))/x/ln(x)/ln(5*exp(x)*ln(x)/x),x,method=_RETURNVERBOSE)
[Out]
result too large to display
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="maxima")
[Out]
-x^4*e^10 - 2/3*(3*(log(5) + 4)*e^10 - 2*e^5)*x^3 + 2/3*x^3*e^5 - ((log(5)^2 + 16*log(5) + 16)*e^10 - (2*log(5
) + 5)*e^5)*x^2 + 3*x^2*e^5 - (x^2*e^10 + 8*x*e^10 + 16*e^10)*log(x)^2 - (x^2*e^10 + 8*x*e^10 + 16*e^10)*log(l
og(x))^2 - 8*((log(5)^2 + 4*log(5))*e^10 - (log(5) + 1)*e^5)*x - x^2 - 8*x*e^5 + 2*Ei(2*log(x))*e^5 + 8*Ei(log
(x))*e^5 + 2*(x^3*e^10 + ((log(5) + 8)*e^10 - e^5)*x^2 + 4*(2*(log(5) + 2)*e^10 - e^5)*x + 16*e^10*log(5))*log
(x) - 2*(x^3*e^10 + ((log(5) + 8)*e^10 - e^5)*x^2 + 4*(2*(log(5) + 2)*e^10 - e^5)*x - (x^2*e^10 + 8*x*e^10 + 1
6*e^10)*log(x))*log(log(x)) - 2*integrate((x^2*e^5 + 4*x*e^5 + 16*e^10*log(5))/(x*log(x)), x)
________________________________________________________________________________________
mupad [B] time = 1.59, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*log(log((5*exp(x)*log(x))/x)) + 10)*(16*x + 2*x^2 + log(x)*(16*x + 14*x^2 + 2*x^3 - 32) + log((5*e
xp(x)*log(x))/x)*log(x)*(8*x + 2*x^2) + 32) - exp(log(log((5*exp(x)*log(x))/x)) + 5)*(8*x + 2*x^2 + log(x)*(6*
x^2 - 8*x + 2*x^3) + log((5*exp(x)*log(x))/x)*log(x)*(8*x + 4*x^2)) + 2*x^2*log((5*exp(x)*log(x))/x)*log(x))/(
x*log((5*exp(x)*log(x))/x)*log(x)),x)
[Out]
-(4*log((5*exp(x)*log(x))/x)*exp(5) - x + x*log((5*exp(x)*log(x))/x)*exp(5))^2
________________________________________________________________________________________
sympy [B] time = 0.78, size = 63, normalized size = 2.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x**2-8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(-2*x**3-14*x**2-16*x+32)*ln(x)-2*x**2-16*x-32)*exp(ln(ln
(5*exp(x)*ln(x)/x))+5)**2+((4*x**2+8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(2*x**3+6*x**2-8*x)*ln(x)+2*x**2+8*x)*exp(l
n(ln(5*exp(x)*ln(x)/x))+5)-2*x**2*ln(x)*ln(5*exp(x)*ln(x)/x))/x/ln(x)/ln(5*exp(x)*ln(x)/x),x)
[Out]
-x**2 + (2*x**2*exp(5) + 8*x*exp(5))*log(5*exp(x)*log(x)/x) + (-x**2*exp(10) - 8*x*exp(10) - 16*exp(10))*log(5
*exp(x)*log(x)/x)**2
________________________________________________________________________________________