3.17.11 2x2log(x)log(5exlog(x)x)+e10log2(5exlog(x)x)(3216x2x2+(3216x14x22x3)log(x)+(8x2x2)log(x)log(5exlog(x)x))+e5log(5exlog(x)x)(8x+2x2+(8x+6x2+2x3)log(x)+(8x+4x2)log(x)log(5exlog(x)x))xlog(x)log(5exlog(x)x)dx

Optimal. Leaf size=28 3(x+e5(4+x)log(5exlog(x)x))2

________________________________________________________________________________________

Rubi [F]  time = 2.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2x2log(x)log(5exlog(x)x)+e10log2(5exlog(x)x)(3216x2x2+(3216x14x22x3)log(x)+(8x2x2)log(x)log(5exlog(x)x))+e5log(5exlog(x)x)(8x+2x2+(8x+6x2+2x3)log(x)+(8x+4x2)log(x)log(5exlog(x)x))xlog(x)log(5exlog(x)x)dx

Verification is not applicable to the result.

[In]

Int[(-2*x^2*Log[x]*Log[(5*E^x*Log[x])/x] + E^10*Log[(5*E^x*Log[x])/x]^2*(-32 - 16*x - 2*x^2 + (32 - 16*x - 14*
x^2 - 2*x^3)*Log[x] + (-8*x - 2*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]) + E^5*Log[(5*E^x*Log[x])/x]*(8*x + 2*x^2 +
(-8*x + 6*x^2 + 2*x^3)*Log[x] + (8*x + 4*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]))/(x*Log[x]*Log[(5*E^x*Log[x])/x]),
x]

[Out]

-8*E^5*x + 16*E^10*x + 8*E^5*(1 - 2*E^5)*x - x^2 + 3*E^5*x^2 + (E^5*(2 - 7*E^5)*x^2)/2 - 4*E^5*(1 - 2*E^5)*x^2
 + (2*E^5*x^3)/3 - (2*E^10*x^3)/9 - (E^5*(2 - 7*E^5)*x^3)/3 + (E^10*x^4)/6 + 2*E^5*ExpIntegralEi[2*Log[x]] - 1
6*E^10*ExpIntegralEi[2*Log[x]] - E^5*(2 - 7*E^5)*ExpIntegralEi[2*Log[x]] + (2*E^10*ExpIntegralEi[3*Log[x]])/3
+ 8*E^5*(1 - 2*E^5)*x*Log[(5*E^x*Log[x])/x] + E^5*(2 - 7*E^5)*x^2*Log[(5*E^x*Log[x])/x] - (2*E^10*x^3*Log[(5*E
^x*Log[x])/x])/3 + 8*E^5*LogIntegral[x] - 8*E^5*(1 - 2*E^5)*LogIntegral[x] + 16*E^10*x*LogIntegral[x] - 16*E^1
0*Log[x]*LogIntegral[x] - 16*E^10*Log[(5*E^x*Log[x])/x]*LogIntegral[x] + 32*E^10*Defer[Int][Log[(5*E^x*Log[x])
/x]/x, x] - 32*E^10*Defer[Int][Log[(5*E^x*Log[x])/x]/(x*Log[x]), x] - 2*E^10*Defer[Int][(x*Log[(5*E^x*Log[x])/
x])/Log[x], x] - 8*E^10*Defer[Int][Log[(5*E^x*Log[x])/x]^2, x] - 2*E^10*Defer[Int][x*Log[(5*E^x*Log[x])/x]^2,
x] + 16*E^10*Defer[Int][LogIntegral[x]/(x*Log[x]), x]

Rubi steps

integral=2(xe5(4+x)log(5exlog(x)x))(e5(4+x)+log(x)(x+e5(4+3x+x2)+e5xlog(5exlog(x)x)))xlog(x)dx=2(xe5(4+x)log(5exlog(x)x))(e5(4+x)+log(x)(x+e5(4+3x+x2)+e5xlog(5exlog(x)x)))xlog(x)dx=2(4e5+e5x4e5log(x)(13e5)xlog(x)+e5x2log(x)log(x)+e5(16e58e5xe5x2+16e5log(x)+4(12e5)xlog(x)+2(17e52)x2log(x)e5x3log(x))log(5exlog(x)x)xlog(x)e10(4+x)log2(5exlog(x)x))dx=24e5+e5x4e5log(x)(13e5)xlog(x)+e5x2log(x)log(x)dx+(2e5)(16e58e5xe5x2+16e5log(x)+4(12e5)xlog(x)+2(17e52)x2log(x)e5x3log(x))log(5exlog(x)x)xlog(x)dx(2e10)(4+x)log2(5exlog(x)x)dx=2(x+e5(4+3x+x2)+e5(4+x)log(x))dx+(2e5)(e5(4+x)2(2x(2+x)+e5(1+x)(4+x)2)log(x))log(5exlog(x)x)xlog(x)dx(2e10)(4log2(5exlog(x)x)+xlog2(5exlog(x)x))dx=x2+(2e5)(4+3x+x2)dx+(2e5)4+xlog(x)dx+(2e5)(4(12e5)log(5exlog(x)x)+16e5log(5exlog(x)x)x+2(17e52)xlog(5exlog(x)x)e5x2log(5exlog(x)x)8e5log(5exlog(x)x)log(x)16e5log(5exlog(x)x)xlog(x)e5xlog(5exlog(x)x)log(x))dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx=8e5xx2+3e5x2+2e5x33+(2e5)(4log(x)+xlog(x))dx(2e10)x2log(5exlog(x)x)dx(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx(16e10)log(5exlog(x)x)log(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx+(2e5(27e5))xlog(5exlog(x)x)dx+(8e5(12e5))log(5exlog(x)x)dx=8e5xx2+3e5x2+2e5x33+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)16e10log(5exlog(x)x)li(x)+(2e5)xlog(x)dx+(8e5)1log(x)dx+(2e10)x2(1+(1+x)log(x))3log(x)dx(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)(1+(1+x)log(x))li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(2e5(27e5))x(1+(1+x)log(x))2log(x)dx(8e5(12e5))(1+x+1log(x))dx=8e5x+8e5(12e5)xx2+3e5x24e5(12e5)x2+2e5x33+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)16e10log(5exlog(x)x)li(x)+(2e5)Subst(e2xxdx,x,log(x))+13(2e10)x2(1+(1+x)log(x))log(x)dx(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)(li(x)li(x)x+li(x)xlog(x))dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(e5(27e5))x(1+(1+x)log(x))log(x)dx(8e5(12e5))1log(x)dx=8e5x+8e5(12e5)xx2+3e5x24e5(12e5)x2+2e5x33+2e5Ei(2log(x))+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)8e5(12e5)li(x)16e10log(5exlog(x)x)li(x)+13(2e10)((1+x)x2+x2log(x))dx(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)li(x)dx(16e10)li(x)xdx+(16e10)li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(e5(27e5))x(1+x+1log(x))dx=8e5x+16e10x+8e5(12e5)xx2+3e5x24e5(12e5)x2+2e5x33+2e5Ei(2log(x))16e10Ei(2log(x))+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)8e5(12e5)li(x)+16e10xli(x)16e10log(x)li(x)16e10log(5exlog(x)x)li(x)+13(2e10)(1+x)x2dx+13(2e10)x2log(x)dx(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(e5(27e5))((1+x)x+xlog(x))dx=8e5x+16e10x+8e5(12e5)xx2+3e5x24e5(12e5)x2+2e5x33+2e5Ei(2log(x))16e10Ei(2log(x))+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)8e5(12e5)li(x)+16e10xli(x)16e10log(x)li(x)16e10log(5exlog(x)x)li(x)+13(2e10)(x2+x3)dx+13(2e10)Subst(e3xxdx,x,log(x))(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(e5(27e5))(1+x)xdx(e5(27e5))xlog(x)dx=8e5x+16e10x+8e5(12e5)xx2+3e5x24e5(12e5)x2+2e5x332e10x39+e10x46+2e5Ei(2log(x))16e10Ei(2log(x))+23e10Ei(3log(x))+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)8e5(12e5)li(x)+16e10xli(x)16e10log(x)li(x)16e10log(5exlog(x)x)li(x)(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx(e5(27e5))(x+x2)dx(e5(27e5))Subst(e2xxdx,x,log(x))=8e5x+16e10x+8e5(12e5)xx2+3e5x2+12e5(27e5)x24e5(12e5)x2+2e5x332e10x3913e5(27e5)x3+e10x46+2e5Ei(2log(x))16e10Ei(2log(x))e5(27e5)Ei(2log(x))+23e10Ei(3log(x))+8e5(12e5)xlog(5exlog(x)x)+e5(27e5)x2log(5exlog(x)x)23e10x3log(5exlog(x)x)+8e5li(x)8e5(12e5)li(x)+16e10xli(x)16e10log(x)li(x)16e10log(5exlog(x)x)li(x)(2e10)xlog(5exlog(x)x)log(x)dx(2e10)xlog2(5exlog(x)x)dx(8e10)log2(5exlog(x)x)dx+(16e10)li(x)xlog(x)dx+(32e10)log(5exlog(x)x)xdx(32e10)log(5exlog(x)x)xlog(x)dx

________________________________________________________________________________________

Mathematica [B]  time = 0.45, size = 180, normalized size = 6.43 x2+16e10x216e10log2(log(x)x)32e10log(x)(x+log(log(x)x)log(5exlog(x)x))+32e10log(log(x))(x+log(log(x)x)log(5exlog(x)x))+8e5xlog(5exlog(x)x)32e10xlog(5exlog(x)x)+2e5x2log(5exlog(x)x)8e10xlog2(5exlog(x)x)e10x2log2(5exlog(x)x)

Antiderivative was successfully verified.

[In]

Integrate[(-2*x^2*Log[x]*Log[(5*E^x*Log[x])/x] + E^10*Log[(5*E^x*Log[x])/x]^2*(-32 - 16*x - 2*x^2 + (32 - 16*x
 - 14*x^2 - 2*x^3)*Log[x] + (-8*x - 2*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]) + E^5*Log[(5*E^x*Log[x])/x]*(8*x + 2*
x^2 + (-8*x + 6*x^2 + 2*x^3)*Log[x] + (8*x + 4*x^2)*Log[x]*Log[(5*E^x*Log[x])/x]))/(x*Log[x]*Log[(5*E^x*Log[x]
)/x]),x]

[Out]

-x^2 + 16*E^10*x^2 - 16*E^10*Log[Log[x]/x]^2 - 32*E^10*Log[x]*(x + Log[Log[x]/x] - Log[(5*E^x*Log[x])/x]) + 32
*E^10*Log[Log[x]]*(x + Log[Log[x]/x] - Log[(5*E^x*Log[x])/x]) + 8*E^5*x*Log[(5*E^x*Log[x])/x] - 32*E^10*x*Log[
(5*E^x*Log[x])/x] + 2*E^5*x^2*Log[(5*E^x*Log[x])/x] - 8*E^10*x*Log[(5*E^x*Log[x])/x]^2 - E^10*x^2*Log[(5*E^x*L
og[x])/x]^2

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 51, normalized size = 1.82 (x2+8x+16)e10log(5exlog(x)x)2+2(x2+4x)e5log(5exlog(x)x)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="fricas")

[Out]

-(x^2 + 8*x + 16)*e^10*log(5*e^x*log(x)/x)^2 + 2*(x^2 + 4*x)*e^5*log(5*e^x*log(x)/x) - x^2

________________________________________________________________________________________

giac [B]  time = 0.38, size = 338, normalized size = 12.07 x4e102x3e10log(5)x2e10log(5)2+2x3e10log(x)+2x2e10log(5)log(x)x2e10log(x)22x3e10log(log(x))2x2e10log(5)log(log(x))+2x2e10log(x)log(log(x))x2e10log(log(x))28x3e10+2x3e516x2e10log(5)+2x2e5log(5)8xe10log(5)2+16x2e10log(x)2x2e5log(x)+16xe10log(5)log(x)8xe10log(x)216x2e10log(log(x))+2x2e5log(log(x))16xe10log(5)log(log(x))+16xe10log(x)log(log(x))8xe10log(log(x))216x2e10+8x2e532xe10log(5)+8xe5log(5)+32xe10log(x)8xe5log(x)+32e10log(5)log(x)16e10log(x)232xe10log(log(x))+8xe5log(log(x))32e10log(5)log(log(x))+32e10log(x)log(log(x))16e10log(log(x))2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="giac")

[Out]

-x^4*e^10 - 2*x^3*e^10*log(5) - x^2*e^10*log(5)^2 + 2*x^3*e^10*log(x) + 2*x^2*e^10*log(5)*log(x) - x^2*e^10*lo
g(x)^2 - 2*x^3*e^10*log(log(x)) - 2*x^2*e^10*log(5)*log(log(x)) + 2*x^2*e^10*log(x)*log(log(x)) - x^2*e^10*log
(log(x))^2 - 8*x^3*e^10 + 2*x^3*e^5 - 16*x^2*e^10*log(5) + 2*x^2*e^5*log(5) - 8*x*e^10*log(5)^2 + 16*x^2*e^10*
log(x) - 2*x^2*e^5*log(x) + 16*x*e^10*log(5)*log(x) - 8*x*e^10*log(x)^2 - 16*x^2*e^10*log(log(x)) + 2*x^2*e^5*
log(log(x)) - 16*x*e^10*log(5)*log(log(x)) + 16*x*e^10*log(x)*log(log(x)) - 8*x*e^10*log(log(x))^2 - 16*x^2*e^
10 + 8*x^2*e^5 - 32*x*e^10*log(5) + 8*x*e^5*log(5) + 32*x*e^10*log(x) - 8*x*e^5*log(x) + 32*e^10*log(5)*log(x)
 - 16*e^10*log(x)^2 - 32*x*e^10*log(log(x)) + 8*x*e^5*log(log(x)) - 32*e^10*log(5)*log(log(x)) + 32*e^10*log(x
)*log(log(x)) - 16*e^10*log(log(x))^2 - x^2

________________________________________________________________________________________

maple [C]  time = 1.56, size = 5540, normalized size = 197.86




method result size



risch Expression too large to display 5540



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-2*x^2-8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(-2*x^3-14*x^2-16*x+32)*ln(x)-2*x^2-16*x-32)*exp(ln(ln(5*exp(x)*
ln(x)/x))+5)^2+((4*x^2+8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(2*x^3+6*x^2-8*x)*ln(x)+2*x^2+8*x)*exp(ln(ln(5*exp(x)*l
n(x)/x))+5)-2*x^2*ln(x)*ln(5*exp(x)*ln(x)/x))/x/ln(x)/ln(5*exp(x)*ln(x)/x),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 x4e1023(3(log(5)+4)e102e5)x3+23x3e5((log(5)2+16log(5)+16)e10(2log(5)+5)e5)x2+3x2e5(x2e10+8xe10+16e10)log(x)2(x2e10+8xe10+16e10)log(log(x))28((log(5)2+4log(5))e10(log(5)+1)e5)xx28xe5+2Ei(2log(x))e5+8Ei(log(x))e5+2(x3e10+((log(5)+8)e10e5)x2+4(2(log(5)+2)e10e5)x+16e10log(5))log(x)2(x3e10+((log(5)+8)e10e5)x2+4(2(log(5)+2)e10e5)x(x2e10+8xe10+16e10)log(x))log(log(x))2x2e5+4xe5+16e10log(5)xlog(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-8*x)*log(x)*log(5*exp(x)*log(x)/x)+(-2*x^3-14*x^2-16*x+32)*log(x)-2*x^2-16*x-32)*exp(log(l
og(5*exp(x)*log(x)/x))+5)^2+((4*x^2+8*x)*log(x)*log(5*exp(x)*log(x)/x)+(2*x^3+6*x^2-8*x)*log(x)+2*x^2+8*x)*exp
(log(log(5*exp(x)*log(x)/x))+5)-2*x^2*log(x)*log(5*exp(x)*log(x)/x))/x/log(x)/log(5*exp(x)*log(x)/x),x, algori
thm="maxima")

[Out]

-x^4*e^10 - 2/3*(3*(log(5) + 4)*e^10 - 2*e^5)*x^3 + 2/3*x^3*e^5 - ((log(5)^2 + 16*log(5) + 16)*e^10 - (2*log(5
) + 5)*e^5)*x^2 + 3*x^2*e^5 - (x^2*e^10 + 8*x*e^10 + 16*e^10)*log(x)^2 - (x^2*e^10 + 8*x*e^10 + 16*e^10)*log(l
og(x))^2 - 8*((log(5)^2 + 4*log(5))*e^10 - (log(5) + 1)*e^5)*x - x^2 - 8*x*e^5 + 2*Ei(2*log(x))*e^5 + 8*Ei(log
(x))*e^5 + 2*(x^3*e^10 + ((log(5) + 8)*e^10 - e^5)*x^2 + 4*(2*(log(5) + 2)*e^10 - e^5)*x + 16*e^10*log(5))*log
(x) - 2*(x^3*e^10 + ((log(5) + 8)*e^10 - e^5)*x^2 + 4*(2*(log(5) + 2)*e^10 - e^5)*x - (x^2*e^10 + 8*x*e^10 + 1
6*e^10)*log(x))*log(log(x)) - 2*integrate((x^2*e^5 + 4*x*e^5 + 16*e^10*log(5))/(x*log(x)), x)

________________________________________________________________________________________

mupad [B]  time = 1.59, size = 36, normalized size = 1.29 (4ln(5exln(x)x)e5x+xln(5exln(x)x)e5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*log(log((5*exp(x)*log(x))/x)) + 10)*(16*x + 2*x^2 + log(x)*(16*x + 14*x^2 + 2*x^3 - 32) + log((5*e
xp(x)*log(x))/x)*log(x)*(8*x + 2*x^2) + 32) - exp(log(log((5*exp(x)*log(x))/x)) + 5)*(8*x + 2*x^2 + log(x)*(6*
x^2 - 8*x + 2*x^3) + log((5*exp(x)*log(x))/x)*log(x)*(8*x + 4*x^2)) + 2*x^2*log((5*exp(x)*log(x))/x)*log(x))/(
x*log((5*exp(x)*log(x))/x)*log(x)),x)

[Out]

-(4*log((5*exp(x)*log(x))/x)*exp(5) - x + x*log((5*exp(x)*log(x))/x)*exp(5))^2

________________________________________________________________________________________

sympy [B]  time = 0.78, size = 63, normalized size = 2.25 x2+(2x2e5+8xe5)log(5exlog(x)x)+(x2e108xe1016e10)log(5exlog(x)x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x**2-8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(-2*x**3-14*x**2-16*x+32)*ln(x)-2*x**2-16*x-32)*exp(ln(ln
(5*exp(x)*ln(x)/x))+5)**2+((4*x**2+8*x)*ln(x)*ln(5*exp(x)*ln(x)/x)+(2*x**3+6*x**2-8*x)*ln(x)+2*x**2+8*x)*exp(l
n(ln(5*exp(x)*ln(x)/x))+5)-2*x**2*ln(x)*ln(5*exp(x)*ln(x)/x))/x/ln(x)/ln(5*exp(x)*ln(x)/x),x)

[Out]

-x**2 + (2*x**2*exp(5) + 8*x*exp(5))*log(5*exp(x)*log(x)/x) + (-x**2*exp(10) - 8*x*exp(10) - 16*exp(10))*log(5
*exp(x)*log(x)/x)**2

________________________________________________________________________________________