Optimal. Leaf size=24 \[ \frac {900 \left (3-\log \left (\frac {x^2}{\log (4+x)}\right )\right )^2}{(-5+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 14.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-27000 x+5400 x^2+\left (216000-54000 x-27000 x^2\right ) \log (4+x)+\left (9000 x-1800 x^2+\left (-72000+39600 x+14400 x^2\right ) \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )+\left (-7200 x-1800 x^2\right ) \log (4+x) \log ^2\left (\frac {x^2}{\log (4+x)}\right )}{\left (-500 x+175 x^2+15 x^3-11 x^4+x^5\right ) \log (4+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1800 \left (3-\log \left (\frac {x^2}{\log (4+x)}\right )\right ) \left (-((-5+x) x)-(4+x) \log (4+x) \left (10-5 x+x \log \left (\frac {x^2}{\log (4+x)}\right )\right )\right )}{(5-x)^3 x (4+x) \log (4+x)} \, dx\\ &=1800 \int \frac {\left (3-\log \left (\frac {x^2}{\log (4+x)}\right )\right ) \left (-((-5+x) x)-(4+x) \log (4+x) \left (10-5 x+x \log \left (\frac {x^2}{\log (4+x)}\right )\right )\right )}{(5-x)^3 x (4+x) \log (4+x)} \, dx\\ &=1800 \int \left (-\frac {15}{(-5+x)^3}+\frac {30}{(-5+x)^3 x}+\frac {3}{(-5+x)^2 (4+x) \log (4+x)}+\frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3 x (4+x) \log (4+x)}-\frac {\log ^2\left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3}\right ) \, dx\\ &=\frac {13500}{(5-x)^2}+1800 \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3 x (4+x) \log (4+x)} \, dx-1800 \int \frac {\log ^2\left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3} \, dx+5400 \int \frac {1}{(-5+x)^2 (4+x) \log (4+x)} \, dx+54000 \int \frac {1}{(-5+x)^3 x} \, dx\\ &=\frac {13500}{(5-x)^2}-1800 \int \frac {\log ^2\left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3} \, dx+1800 \int \left (\frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{45 (-5+x)^3 \log (4+x)}-\frac {14 \left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{2025 (-5+x)^2 \log (4+x)}+\frac {151 \left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{91125 (-5+x) \log (4+x)}-\frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{500 x \log (4+x)}+\frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{2916 (4+x) \log (4+x)}\right ) \, dx+5400 \int \left (\frac {1}{9 (-5+x)^2 \log (4+x)}-\frac {1}{81 (-5+x) \log (4+x)}+\frac {1}{81 (4+x) \log (4+x)}\right ) \, dx+54000 \int \left (\frac {1}{5 (-5+x)^3}-\frac {1}{25 (-5+x)^2}+\frac {1}{125 (-5+x)}-\frac {1}{125 x}\right ) \, dx\\ &=\frac {8100}{(5-x)^2}-\frac {2160}{5-x}+432 \log (5-x)-432 \log (x)+\frac {50}{81} \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(4+x) \log (4+x)} \, dx+\frac {1208}{405} \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x) \log (4+x)} \, dx-\frac {18}{5} \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{x \log (4+x)} \, dx-\frac {112}{9} \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2 \log (4+x)} \, dx+40 \int \frac {\left (5 x-x^2-40 \log (4+x)+22 x \log (4+x)+8 x^2 \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3 \log (4+x)} \, dx-\frac {200}{3} \int \frac {1}{(-5+x) \log (4+x)} \, dx+\frac {200}{3} \int \frac {1}{(4+x) \log (4+x)} \, dx+600 \int \frac {1}{(-5+x)^2 \log (4+x)} \, dx-1800 \int \frac {\log ^2\left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3} \, dx\\ &=\frac {8100}{(5-x)^2}-\frac {2160}{5-x}+432 \log (5-x)-432 \log (x)+\frac {50}{81} \int \frac {\left (-((-5+x) x)+\left (-40+22 x+8 x^2\right ) \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{(4+x) \log (4+x)} \, dx+\frac {1208}{405} \int \left (-\frac {40 \log \left (\frac {x^2}{\log (4+x)}\right )}{-5+x}+\frac {22 x \log \left (\frac {x^2}{\log (4+x)}\right )}{-5+x}+\frac {8 x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{-5+x}+\frac {5 x \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x) \log (4+x)}-\frac {x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x) \log (4+x)}\right ) \, dx-\frac {18}{5} \int \frac {\left (-((-5+x) x)+\left (-40+22 x+8 x^2\right ) \log (4+x)\right ) \log \left (\frac {x^2}{\log (4+x)}\right )}{x \log (4+x)} \, dx-\frac {112}{9} \int \left (-\frac {40 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2}+\frac {22 x \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2}+\frac {8 x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2}+\frac {5 x \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2 \log (4+x)}-\frac {x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^2 \log (4+x)}\right ) \, dx+40 \int \left (-\frac {40 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3}+\frac {22 x \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3}+\frac {8 x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3}+\frac {5 x \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3 \log (4+x)}-\frac {x^2 \log \left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3 \log (4+x)}\right ) \, dx-\frac {200}{3} \int \frac {1}{(-5+x) \log (4+x)} \, dx+\frac {200}{3} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,4+x\right )+600 \int \frac {1}{(-5+x)^2 \log (4+x)} \, dx-1800 \int \frac {\log ^2\left (\frac {x^2}{\log (4+x)}\right )}{(-5+x)^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 22, normalized size = 0.92 \begin {gather*} \frac {900 \left (-3+\log \left (\frac {x^2}{\log (4+x)}\right )\right )^2}{(-5+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 40, normalized size = 1.67 \begin {gather*} \frac {900 \, {\left (\log \left (\frac {x^{2}}{\log \left (x + 4\right )}\right )^{2} - 6 \, \log \left (\frac {x^{2}}{\log \left (x + 4\right )}\right ) + 9\right )}}{x^{2} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.76, size = 101, normalized size = 4.21 \begin {gather*} -1800 \, {\left (\frac {\log \left (x^{2}\right )}{x^{2} - 10 \, x + 25} - \frac {3}{x^{2} - 10 \, x + 25}\right )} \log \left (\log \left (x + 4\right )\right ) + \frac {900 \, \log \left (x^{2}\right )^{2}}{x^{2} - 10 \, x + 25} + \frac {900 \, \log \left (\log \left (x + 4\right )\right )^{2}}{x^{2} - 10 \, x + 25} - \frac {5400 \, \log \left (x^{2}\right )}{x^{2} - 10 \, x + 25} + \frac {8100}{x^{2} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 1389, normalized size = 57.88
method | result | size |
risch | \(\frac {900 \ln \left (\ln \left (4+x \right )\right )^{2}}{x^{2}-10 x +25}-\frac {900 \left (-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}+4 \ln \relax (x )-6\right ) \ln \left (\ln \left (4+x \right )\right )}{x^{2}-10 x +25}+\frac {8100-10800 \ln \relax (x )+3600 \ln \relax (x )^{2}-225 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-225 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}+450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-900 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{4}-1800 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-1800 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-2700 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-2700 i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+450 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-450 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-900 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+900 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )+450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-5400 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+2700 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2700 i \pi \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-225 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{4}+450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{5}-225 \pi ^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right )^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{4}+450 \pi ^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{5}+450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-450 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{3}-225 \pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+900 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-1350 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+900 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-225 \pi ^{2} \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{6}+2700 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+3600 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+1800 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+1800 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+2700 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )-450 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )+450 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}+900 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )-900 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )^{2}-1800 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-1800 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (4+x \right )}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\ln \left (4+x \right )}\right )}{x^{2}-10 x +25}\) | \(1389\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 44, normalized size = 1.83 \begin {gather*} \frac {900 \, {\left (4 \, \log \relax (x)^{2} - 2 \, {\left (2 \, \log \relax (x) - 3\right )} \log \left (\log \left (x + 4\right )\right ) + \log \left (\log \left (x + 4\right )\right )^{2} - 12 \, \log \relax (x) + 9\right )}}{x^{2} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 22, normalized size = 0.92 \begin {gather*} \frac {900\,{\left (\ln \left (\frac {x^2}{\ln \left (x+4\right )}\right )-3\right )}^2}{{\left (x-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.58, size = 53, normalized size = 2.21 \begin {gather*} \frac {16200}{2 x^{2} - 20 x + 50} + \frac {900 \log {\left (\frac {x^{2}}{\log {\left (x + 4 \right )}} \right )}^{2}}{x^{2} - 10 x + 25} - \frac {5400 \log {\left (\frac {x^{2}}{\log {\left (x + 4 \right )}} \right )}}{x^{2} - 10 x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________