3.17.16
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [F] time = 14.75, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-27000*x + 5400*x^2 + (216000 - 54000*x - 27000*x^2)*Log[4 + x] + (9000*x - 1800*x^2 + (-72000 + 39600*x
+ 14400*x^2)*Log[4 + x])*Log[x^2/Log[4 + x]] + (-7200*x - 1800*x^2)*Log[4 + x]*Log[x^2/Log[4 + x]]^2)/((-500*x
+ 175*x^2 + 15*x^3 - 11*x^4 + x^5)*Log[4 + x]),x]
[Out]
8100/(5 - x)^2 + 288*Log[5 - x] - 112*Log[x] - (3200*Log[x^2/Log[4 + x]])/(5 - x)^2 - (160*Log[x^2/Log[4 + x]]
)/(5 - x) - (88*x^2*Log[x^2/Log[4 + x]])/(5 - x)^2 - 8*Log[Log[4 + x]] - 80*Defer[Int][1/((-5 + x)*Log[4 + x])
, x] - 144*Defer[Int][Log[x^2/Log[4 + x]]/(-5 + x), x] + 144*Defer[Int][Log[x^2/Log[4 + x]]/x, x] - 200*Defer[
Int][Log[x^2/Log[4 + x]]/((-5 + x)^2*Log[4 + x]), x] + (200*Defer[Int][Log[x^2/Log[4 + x]]/((-5 + x)*Log[4 + x
]), x])/9 - (200*Defer[Int][Log[x^2/Log[4 + x]]/((4 + x)*Log[4 + x]), x])/9 - 1800*Defer[Int][Log[x^2/Log[4 +
x]]^2/(-5 + x)^3, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 22, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[(-27000*x + 5400*x^2 + (216000 - 54000*x - 27000*x^2)*Log[4 + x] + (9000*x - 1800*x^2 + (-72000 + 39
600*x + 14400*x^2)*Log[4 + x])*Log[x^2/Log[4 + x]] + (-7200*x - 1800*x^2)*Log[4 + x]*Log[x^2/Log[4 + x]]^2)/((
-500*x + 175*x^2 + 15*x^3 - 11*x^4 + x^5)*Log[4 + x]),x]
[Out]
(900*(-3 + Log[x^2/Log[4 + x]])^2)/(-5 + x)^2
________________________________________________________________________________________
fricas [A] time = 0.70, size = 40, normalized size = 1.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="fricas")
[Out]
900*(log(x^2/log(x + 4))^2 - 6*log(x^2/log(x + 4)) + 9)/(x^2 - 10*x + 25)
________________________________________________________________________________________
giac [B] time = 0.76, size = 101, normalized size = 4.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="giac")
[Out]
-1800*(log(x^2)/(x^2 - 10*x + 25) - 3/(x^2 - 10*x + 25))*log(log(x + 4)) + 900*log(x^2)^2/(x^2 - 10*x + 25) +
900*log(log(x + 4))^2/(x^2 - 10*x + 25) - 5400*log(x^2)/(x^2 - 10*x + 25) + 8100/(x^2 - 10*x + 25)
________________________________________________________________________________________
maple [C] time = 0.33, size = 1389, normalized size = 57.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-1800*x^2-7200*x)*ln(4+x)*ln(x^2/ln(4+x))^2+((14400*x^2+39600*x-72000)*ln(4+x)-1800*x^2+9000*x)*ln(x^2/l
n(4+x))+(-27000*x^2-54000*x+216000)*ln(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/ln(4+x),x,meth
od=_RETURNVERBOSE)
[Out]
900/(x^2-10*x+25)*ln(ln(4+x))^2-900*(-I*Pi*csgn(I*x^2)*csgn(I*x)^2+2*I*Pi*csgn(I*x^2)^2*csgn(I*x)-I*Pi*csgn(I*
x^2)^3-I*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+I*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2+I*Pi*csgn(I
/ln(4+x))*csgn(I*x^2/ln(4+x))^2-I*Pi*csgn(I*x^2/ln(4+x))^3+4*ln(x)-6)/(x^2-10*x+25)*ln(ln(4+x))+225*(36-48*ln(
x)+16*ln(x)^2-Pi^2*csgn(I*x^2)^6+2*Pi^2*csgn(I*x)^2*csgn(I*x^2)^2*csgn(I*x^2/ln(4+x))^2-2*Pi^2*csgn(I*x)^2*csg
n(I*x^2)*csgn(I*x^2/ln(4+x))^3-4*Pi^2*csgn(I*x)*csgn(I*x^2)^3*csgn(I*x^2/ln(4+x))^2+4*Pi^2*csgn(I*x)*csgn(I*x^
2)^2*csgn(I*x^2/ln(4+x))^3-2*Pi^2*csgn(I*x^2)^4*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+2*Pi^2*csgn(I*x^2)^3*csgn(
I/ln(4+x))*csgn(I*x^2/ln(4+x))^2-Pi^2*csgn(I*x^2)^2*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^2+2*Pi^2*csgn(I*x^2)
^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^3+2*Pi^2*csgn(I*x^2)*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^3-4*Pi^2*csg
n(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^4-8*I*ln(x)*Pi*csgn(I*x^2)^3-8*I*ln(x)*Pi*csgn(I*x^2/ln(4+x))^3+1
2*I*Pi*csgn(I*x)^2*csgn(I*x^2)-24*I*Pi*csgn(I*x)*csgn(I*x^2)^2-12*I*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2-12*I*
Pi*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^2-Pi^2*csgn(I*x)^4*csgn(I*x^2)^2+4*Pi^2*csgn(I*x)^3*csgn(I*x^2)^3-6*Pi^
2*csgn(I*x)^2*csgn(I*x^2)^4+4*Pi^2*csgn(I*x)*csgn(I*x^2)^5-Pi^2*csgn(I*x^2/ln(4+x))^6-2*Pi^2*csgn(I*x)^2*csgn(
I*x^2)^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+2*Pi^2*csgn(I*x)^2*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x)
)^2+4*Pi^2*csgn(I*x)*csgn(I*x^2)^3*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))-4*Pi^2*csgn(I*x)*csgn(I*x^2)^2*csgn(I/l
n(4+x))*csgn(I*x^2/ln(4+x))^2+12*I*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))-8*I*ln(x)*Pi*csgn(I*x)^2
*csgn(I*x^2)+16*I*ln(x)*Pi*csgn(I*x)*csgn(I*x^2)^2+8*I*ln(x)*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2+8*I*ln(x)*Pi
*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^2+12*I*Pi*csgn(I*x^2/ln(4+x))^3+12*I*Pi*csgn(I*x^2)^3-Pi^2*csgn(I*x^2)^2*
csgn(I*x^2/ln(4+x))^4+2*Pi^2*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^5-Pi^2*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^4+2*
Pi^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^5+2*Pi^2*csgn(I*x^2)^4*csgn(I*x^2/ln(4+x))^2-2*Pi^2*csgn(I*x^2)^3*csg
n(I*x^2/ln(4+x))^3-8*I*ln(x)*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x)))/(x^2-10*x+25)
________________________________________________________________________________________
maxima [A] time = 0.69, size = 44, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="maxima")
[Out]
900*(4*log(x)^2 - 2*(2*log(x) - 3)*log(log(x + 4)) + log(log(x + 4))^2 - 12*log(x) + 9)/(x^2 - 10*x + 25)
________________________________________________________________________________________
mupad [B] time = 1.42, size = 22, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(27000*x + log(x + 4)*(54000*x + 27000*x^2 - 216000) - log(x^2/log(x + 4))*(9000*x + log(x + 4)*(39600*x
+ 14400*x^2 - 72000) - 1800*x^2) - 5400*x^2 + log(x + 4)*log(x^2/log(x + 4))^2*(7200*x + 1800*x^2))/(log(x + 4
)*(175*x^2 - 500*x + 15*x^3 - 11*x^4 + x^5)),x)
[Out]
(900*(log(x^2/log(x + 4)) - 3)^2)/(x - 5)^2
________________________________________________________________________________________
sympy [B] time = 0.58, size = 53, normalized size = 2.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-1800*x**2-7200*x)*ln(4+x)*ln(x**2/ln(4+x))**2+((14400*x**2+39600*x-72000)*ln(4+x)-1800*x**2+9000*
x)*ln(x**2/ln(4+x))+(-27000*x**2-54000*x+216000)*ln(4+x)+5400*x**2-27000*x)/(x**5-11*x**4+15*x**3+175*x**2-500
*x)/ln(4+x),x)
[Out]
16200/(2*x**2 - 20*x + 50) + 900*log(x**2/log(x + 4))**2/(x**2 - 10*x + 25) - 5400*log(x**2/log(x + 4))/(x**2
- 10*x + 25)
________________________________________________________________________________________