3.17.16 27000x+5400x2+(21600054000x27000x2)log(4+x)+(9000x1800x2+(72000+39600x+14400x2)log(4+x))log(x2log(4+x))+(7200x1800x2)log(4+x)log2(x2log(4+x))(500x+175x2+15x311x4+x5)log(4+x)dx

Optimal. Leaf size=24 900(3log(x2log(4+x)))2(5+x)2

________________________________________________________________________________________

Rubi [F]  time = 14.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 27000x+5400x2+(21600054000x27000x2)log(4+x)+(9000x1800x2+(72000+39600x+14400x2)log(4+x))log(x2log(4+x))+(7200x1800x2)log(4+x)log2(x2log(4+x))(500x+175x2+15x311x4+x5)log(4+x)dx

Verification is not applicable to the result.

[In]

Int[(-27000*x + 5400*x^2 + (216000 - 54000*x - 27000*x^2)*Log[4 + x] + (9000*x - 1800*x^2 + (-72000 + 39600*x
+ 14400*x^2)*Log[4 + x])*Log[x^2/Log[4 + x]] + (-7200*x - 1800*x^2)*Log[4 + x]*Log[x^2/Log[4 + x]]^2)/((-500*x
 + 175*x^2 + 15*x^3 - 11*x^4 + x^5)*Log[4 + x]),x]

[Out]

8100/(5 - x)^2 + 288*Log[5 - x] - 112*Log[x] - (3200*Log[x^2/Log[4 + x]])/(5 - x)^2 - (160*Log[x^2/Log[4 + x]]
)/(5 - x) - (88*x^2*Log[x^2/Log[4 + x]])/(5 - x)^2 - 8*Log[Log[4 + x]] - 80*Defer[Int][1/((-5 + x)*Log[4 + x])
, x] - 144*Defer[Int][Log[x^2/Log[4 + x]]/(-5 + x), x] + 144*Defer[Int][Log[x^2/Log[4 + x]]/x, x] - 200*Defer[
Int][Log[x^2/Log[4 + x]]/((-5 + x)^2*Log[4 + x]), x] + (200*Defer[Int][Log[x^2/Log[4 + x]]/((-5 + x)*Log[4 + x
]), x])/9 - (200*Defer[Int][Log[x^2/Log[4 + x]]/((4 + x)*Log[4 + x]), x])/9 - 1800*Defer[Int][Log[x^2/Log[4 +
x]]^2/(-5 + x)^3, x]

Rubi steps

integral=1800(3log(x2log(4+x)))(((5+x)x)(4+x)log(4+x)(105x+xlog(x2log(4+x))))(5x)3x(4+x)log(4+x)dx=1800(3log(x2log(4+x)))(((5+x)x)(4+x)log(4+x)(105x+xlog(x2log(4+x))))(5x)3x(4+x)log(4+x)dx=1800(15(5+x)3+30(5+x)3x+3(5+x)2(4+x)log(4+x)+(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(5+x)3x(4+x)log(4+x)log2(x2log(4+x))(5+x)3)dx=13500(5x)2+1800(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(5+x)3x(4+x)log(4+x)dx1800log2(x2log(4+x))(5+x)3dx+54001(5+x)2(4+x)log(4+x)dx+540001(5+x)3xdx=13500(5x)21800log2(x2log(4+x))(5+x)3dx+1800((5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))45(5+x)3log(4+x)14(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))2025(5+x)2log(4+x)+151(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))91125(5+x)log(4+x)(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))500xlog(4+x)+(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))2916(4+x)log(4+x))dx+5400(19(5+x)2log(4+x)181(5+x)log(4+x)+181(4+x)log(4+x))dx+54000(15(5+x)3125(5+x)2+1125(5+x)1125x)dx=8100(5x)221605x+432log(5x)432log(x)+5081(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(4+x)log(4+x)dx+1208405(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(5+x)log(4+x)dx185(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))xlog(4+x)dx1129(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(5+x)2log(4+x)dx+40(5xx240log(4+x)+22xlog(4+x)+8x2log(4+x))log(x2log(4+x))(5+x)3log(4+x)dx20031(5+x)log(4+x)dx+20031(4+x)log(4+x)dx+6001(5+x)2log(4+x)dx1800log2(x2log(4+x))(5+x)3dx=8100(5x)221605x+432log(5x)432log(x)+5081(((5+x)x)+(40+22x+8x2)log(4+x))log(x2log(4+x))(4+x)log(4+x)dx+1208405(40log(x2log(4+x))5+x+22xlog(x2log(4+x))5+x+8x2log(x2log(4+x))5+x+5xlog(x2log(4+x))(5+x)log(4+x)x2log(x2log(4+x))(5+x)log(4+x))dx185(((5+x)x)+(40+22x+8x2)log(4+x))log(x2log(4+x))xlog(4+x)dx1129(40log(x2log(4+x))(5+x)2+22xlog(x2log(4+x))(5+x)2+8x2log(x2log(4+x))(5+x)2+5xlog(x2log(4+x))(5+x)2log(4+x)x2log(x2log(4+x))(5+x)2log(4+x))dx+40(40log(x2log(4+x))(5+x)3+22xlog(x2log(4+x))(5+x)3+8x2log(x2log(4+x))(5+x)3+5xlog(x2log(4+x))(5+x)3log(4+x)x2log(x2log(4+x))(5+x)3log(4+x))dx20031(5+x)log(4+x)dx+2003Subst(1xlog(x)dx,x,4+x)+6001(5+x)2log(4+x)dx1800log2(x2log(4+x))(5+x)3dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 22, normalized size = 0.92 900(3+log(x2log(4+x)))2(5+x)2

Antiderivative was successfully verified.

[In]

Integrate[(-27000*x + 5400*x^2 + (216000 - 54000*x - 27000*x^2)*Log[4 + x] + (9000*x - 1800*x^2 + (-72000 + 39
600*x + 14400*x^2)*Log[4 + x])*Log[x^2/Log[4 + x]] + (-7200*x - 1800*x^2)*Log[4 + x]*Log[x^2/Log[4 + x]]^2)/((
-500*x + 175*x^2 + 15*x^3 - 11*x^4 + x^5)*Log[4 + x]),x]

[Out]

(900*(-3 + Log[x^2/Log[4 + x]])^2)/(-5 + x)^2

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 40, normalized size = 1.67 900(log(x2log(x+4))26log(x2log(x+4))+9)x210x+25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="fricas")

[Out]

900*(log(x^2/log(x + 4))^2 - 6*log(x^2/log(x + 4)) + 9)/(x^2 - 10*x + 25)

________________________________________________________________________________________

giac [B]  time = 0.76, size = 101, normalized size = 4.21 1800(log(x2)x210x+253x210x+25)log(log(x+4))+900log(x2)2x210x+25+900log(log(x+4))2x210x+255400log(x2)x210x+25+8100x210x+25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="giac")

[Out]

-1800*(log(x^2)/(x^2 - 10*x + 25) - 3/(x^2 - 10*x + 25))*log(log(x + 4)) + 900*log(x^2)^2/(x^2 - 10*x + 25) +
900*log(log(x + 4))^2/(x^2 - 10*x + 25) - 5400*log(x^2)/(x^2 - 10*x + 25) + 8100/(x^2 - 10*x + 25)

________________________________________________________________________________________

maple [C]  time = 0.33, size = 1389, normalized size = 57.88




method result size



risch 900ln(ln(4+x))2x210x+25900(iπcsgn(ix2)csgn(ix)2+2iπcsgn(ix2)2csgn(ix)iπcsgn(ix2)3iπcsgn(ix2)csgn(iln(4+x))csgn(ix2ln(4+x))+iπcsgn(ix2)csgn(ix2ln(4+x))2+iπcsgn(iln(4+x))csgn(ix2ln(4+x))2iπcsgn(ix2ln(4+x))3+4ln(x)6)ln(ln(4+x))x210x+25+810010800ln(x)+3600ln(x)2225π2csgn(ix2)6225π2csgn(ix2)2csgn(iln(4+x))2csgn(ix2ln(4+x))2+450π2csgn(ix2)2csgn(iln(4+x))csgn(ix2ln(4+x))3+450π2csgn(ix2)csgn(iln(4+x))2csgn(ix2ln(4+x))3900π2csgn(ix2)csgn(iln(4+x))csgn(ix2ln(4+x))41800iln(x)πcsgn(ix2)31800iln(x)πcsgn(ix2ln(4+x))32700iπcsgn(ix2)csgn(ix2ln(4+x))22700iπcsgn(iln(4+x))csgn(ix2ln(4+x))2+450π2csgn(ix)2csgn(ix2)2csgn(ix2ln(4+x))2450π2csgn(ix)2csgn(ix2)csgn(ix2ln(4+x))3900π2csgn(ix)csgn(ix2)3csgn(ix2ln(4+x))2+900π2csgn(ix)csgn(ix2)2csgn(ix2ln(4+x))3450π2csgn(ix2)4csgn(iln(4+x))csgn(ix2ln(4+x))+450π2csgn(ix2)3csgn(iln(4+x))csgn(ix2ln(4+x))25400iπcsgn(ix2)2csgn(ix)+2700iπcsgn(ix2)csgn(ix)2+2700iπcsgn(ix2ln(4+x))3225π2csgn(ix2)2csgn(ix2ln(4+x))4+450π2csgn(ix2)csgn(ix2ln(4+x))5225π2csgn(iln(4+x))2csgn(ix2ln(4+x))4+450π2csgn(iln(4+x))csgn(ix2ln(4+x))5+450π2csgn(ix2)4csgn(ix2ln(4+x))2450π2csgn(ix2)3csgn(ix2ln(4+x))3225π2csgn(ix)4csgn(ix2)2+900π2csgn(ix)3csgn(ix2)31350π2csgn(ix)2csgn(ix2)4+900π2csgn(ix)csgn(ix2)5225π2csgn(ix2ln(4+x))6+2700iπcsgn(ix2)3+3600iln(x)πcsgn(ix)csgn(ix2)2+1800iln(x)πcsgn(ix2)csgn(ix2ln(4+x))2+1800iln(x)πcsgn(iln(4+x))csgn(ix2ln(4+x))2+2700iπcsgn(ix2)csgn(iln(4+x))csgn(ix2ln(4+x))450π2csgn(ix)2csgn(ix2)2csgn(iln(4+x))csgn(ix2ln(4+x))+450π2csgn(ix)2csgn(ix2)csgn(iln(4+x))csgn(ix2ln(4+x))2+900π2csgn(ix)csgn(ix2)3csgn(iln(4+x))csgn(ix2ln(4+x))900π2csgn(ix)csgn(ix2)2csgn(iln(4+x))csgn(ix2ln(4+x))21800iln(x)πcsgn(ix)2csgn(ix2)1800iln(x)πcsgn(ix2)csgn(iln(4+x))csgn(ix2ln(4+x))x210x+25 1389



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-1800*x^2-7200*x)*ln(4+x)*ln(x^2/ln(4+x))^2+((14400*x^2+39600*x-72000)*ln(4+x)-1800*x^2+9000*x)*ln(x^2/l
n(4+x))+(-27000*x^2-54000*x+216000)*ln(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/ln(4+x),x,meth
od=_RETURNVERBOSE)

[Out]

900/(x^2-10*x+25)*ln(ln(4+x))^2-900*(-I*Pi*csgn(I*x^2)*csgn(I*x)^2+2*I*Pi*csgn(I*x^2)^2*csgn(I*x)-I*Pi*csgn(I*
x^2)^3-I*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+I*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2+I*Pi*csgn(I
/ln(4+x))*csgn(I*x^2/ln(4+x))^2-I*Pi*csgn(I*x^2/ln(4+x))^3+4*ln(x)-6)/(x^2-10*x+25)*ln(ln(4+x))+225*(36-48*ln(
x)+16*ln(x)^2-Pi^2*csgn(I*x^2)^6+2*Pi^2*csgn(I*x)^2*csgn(I*x^2)^2*csgn(I*x^2/ln(4+x))^2-2*Pi^2*csgn(I*x)^2*csg
n(I*x^2)*csgn(I*x^2/ln(4+x))^3-4*Pi^2*csgn(I*x)*csgn(I*x^2)^3*csgn(I*x^2/ln(4+x))^2+4*Pi^2*csgn(I*x)*csgn(I*x^
2)^2*csgn(I*x^2/ln(4+x))^3-2*Pi^2*csgn(I*x^2)^4*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+2*Pi^2*csgn(I*x^2)^3*csgn(
I/ln(4+x))*csgn(I*x^2/ln(4+x))^2-Pi^2*csgn(I*x^2)^2*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^2+2*Pi^2*csgn(I*x^2)
^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^3+2*Pi^2*csgn(I*x^2)*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^3-4*Pi^2*csg
n(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^4-8*I*ln(x)*Pi*csgn(I*x^2)^3-8*I*ln(x)*Pi*csgn(I*x^2/ln(4+x))^3+1
2*I*Pi*csgn(I*x)^2*csgn(I*x^2)-24*I*Pi*csgn(I*x)*csgn(I*x^2)^2-12*I*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2-12*I*
Pi*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^2-Pi^2*csgn(I*x)^4*csgn(I*x^2)^2+4*Pi^2*csgn(I*x)^3*csgn(I*x^2)^3-6*Pi^
2*csgn(I*x)^2*csgn(I*x^2)^4+4*Pi^2*csgn(I*x)*csgn(I*x^2)^5-Pi^2*csgn(I*x^2/ln(4+x))^6-2*Pi^2*csgn(I*x)^2*csgn(
I*x^2)^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))+2*Pi^2*csgn(I*x)^2*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x)
)^2+4*Pi^2*csgn(I*x)*csgn(I*x^2)^3*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))-4*Pi^2*csgn(I*x)*csgn(I*x^2)^2*csgn(I/l
n(4+x))*csgn(I*x^2/ln(4+x))^2+12*I*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))-8*I*ln(x)*Pi*csgn(I*x)^2
*csgn(I*x^2)+16*I*ln(x)*Pi*csgn(I*x)*csgn(I*x^2)^2+8*I*ln(x)*Pi*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^2+8*I*ln(x)*Pi
*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^2+12*I*Pi*csgn(I*x^2/ln(4+x))^3+12*I*Pi*csgn(I*x^2)^3-Pi^2*csgn(I*x^2)^2*
csgn(I*x^2/ln(4+x))^4+2*Pi^2*csgn(I*x^2)*csgn(I*x^2/ln(4+x))^5-Pi^2*csgn(I/ln(4+x))^2*csgn(I*x^2/ln(4+x))^4+2*
Pi^2*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x))^5+2*Pi^2*csgn(I*x^2)^4*csgn(I*x^2/ln(4+x))^2-2*Pi^2*csgn(I*x^2)^3*csg
n(I*x^2/ln(4+x))^3-8*I*ln(x)*Pi*csgn(I*x^2)*csgn(I/ln(4+x))*csgn(I*x^2/ln(4+x)))/(x^2-10*x+25)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 44, normalized size = 1.83 900(4log(x)22(2log(x)3)log(log(x+4))+log(log(x+4))212log(x)+9)x210x+25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-1800*x^2-7200*x)*log(4+x)*log(x^2/log(4+x))^2+((14400*x^2+39600*x-72000)*log(4+x)-1800*x^2+9000*x
)*log(x^2/log(4+x))+(-27000*x^2-54000*x+216000)*log(4+x)+5400*x^2-27000*x)/(x^5-11*x^4+15*x^3+175*x^2-500*x)/l
og(4+x),x, algorithm="maxima")

[Out]

900*(4*log(x)^2 - 2*(2*log(x) - 3)*log(log(x + 4)) + log(log(x + 4))^2 - 12*log(x) + 9)/(x^2 - 10*x + 25)

________________________________________________________________________________________

mupad [B]  time = 1.42, size = 22, normalized size = 0.92 900(ln(x2ln(x+4))3)2(x5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(27000*x + log(x + 4)*(54000*x + 27000*x^2 - 216000) - log(x^2/log(x + 4))*(9000*x + log(x + 4)*(39600*x
+ 14400*x^2 - 72000) - 1800*x^2) - 5400*x^2 + log(x + 4)*log(x^2/log(x + 4))^2*(7200*x + 1800*x^2))/(log(x + 4
)*(175*x^2 - 500*x + 15*x^3 - 11*x^4 + x^5)),x)

[Out]

(900*(log(x^2/log(x + 4)) - 3)^2)/(x - 5)^2

________________________________________________________________________________________

sympy [B]  time = 0.58, size = 53, normalized size = 2.21 162002x220x+50+900log(x2log(x+4))2x210x+255400log(x2log(x+4))x210x+25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-1800*x**2-7200*x)*ln(4+x)*ln(x**2/ln(4+x))**2+((14400*x**2+39600*x-72000)*ln(4+x)-1800*x**2+9000*
x)*ln(x**2/ln(4+x))+(-27000*x**2-54000*x+216000)*ln(4+x)+5400*x**2-27000*x)/(x**5-11*x**4+15*x**3+175*x**2-500
*x)/ln(4+x),x)

[Out]

16200/(2*x**2 - 20*x + 50) + 900*log(x**2/log(x + 4))**2/(x**2 - 10*x + 25) - 5400*log(x**2/log(x + 4))/(x**2
- 10*x + 25)

________________________________________________________________________________________