3.17.17 12(20+e12(x+2e2x4x2)(12e2+8x))dx

Optimal. Leaf size=30 ex+x(e2(212x)x)+10x

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 26, normalized size of antiderivative = 0.87, number of steps used = 4, number of rules used = 3, integrand size = 38, number of rulesintegrand size = 0.079, Rules used = {12, 2244, 2236} 10xe2x212(12e2)x

Antiderivative was successfully verified.

[In]

Int[(20 + E^((-x + 2*E^2*x - 4*x^2)/2)*(1 - 2*E^2 + 8*x))/2,x]

[Out]

-E^(-1/2*((1 - 2*E^2)*x) - 2*x^2) + 10*x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2236

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(e*F^(a + b*x + c*x^2))/(
2*c*Log[F]), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]

Rule 2244

Int[(F_)^(v_)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*F^ExpandToSum[v, x], x] /; FreeQ[{F, m}, x] &&
LinearQ[u, x] && QuadraticQ[v, x] &&  !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])

Rubi steps

integral=12(20+e12(x+2e2x4x2)(12e2+8x))dx=10x+12e12(x+2e2x4x2)(12e2+8x)dx=10x+12e12(1+2e2)x2x2(12e2+8x)dx=e12(12e2)x2x2+10x

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 26, normalized size = 0.87 e12(1+2e2)x2x2+10x

Antiderivative was successfully verified.

[In]

Integrate[(20 + E^((-x + 2*E^2*x - 4*x^2)/2)*(1 - 2*E^2 + 8*x))/2,x]

[Out]

-E^(((-1 + 2*E^2)*x)/2 - 2*x^2) + 10*x

________________________________________________________________________________________

fricas [A]  time = 0.87, size = 20, normalized size = 0.67 10xe(2x2+xe212x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(-2*exp(2)+8*x+1)*exp(exp(2)*x-2*x^2-1/2*x)+10,x, algorithm="fricas")

[Out]

10*x - e^(-2*x^2 + x*e^2 - 1/2*x)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 20, normalized size = 0.67 10xe(2x2+xe212x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(-2*exp(2)+8*x+1)*exp(exp(2)*x-2*x^2-1/2*x)+10,x, algorithm="giac")

[Out]

10*x - e^(-2*x^2 + x*e^2 - 1/2*x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 20, normalized size = 0.67




method result size



risch 10xex(2e24x1)2 20
norman 10xee2x2x2x2 21
default 10x+πe(e212)282erf(2x(e212)24)8e2x2+(e212)x+(e212)πe(e212)282erf(2x(e212)24)4πe2+(e212)282erf(2x(e212)24)4 125



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(-2*exp(2)+8*x+1)*exp(exp(2)*x-2*x^2-1/2*x)+10,x,method=_RETURNVERBOSE)

[Out]

10*x-exp(1/2*x*(2*exp(2)-4*x-1))

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 20, normalized size = 0.67 10xe(2x2+xe212x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(-2*exp(2)+8*x+1)*exp(exp(2)*x-2*x^2-1/2*x)+10,x, algorithm="maxima")

[Out]

10*x - e^(-2*x^2 + x*e^2 - 1/2*x)

________________________________________________________________________________________

mupad [B]  time = 1.16, size = 20, normalized size = 0.67 10xexe2x22x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x*exp(2) - x/2 - 2*x^2)*(8*x - 2*exp(2) + 1))/2 + 10,x)

[Out]

10*x - exp(x*exp(2) - x/2 - 2*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 17, normalized size = 0.57 10xe2x2x2+xe2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(-2*exp(2)+8*x+1)*exp(exp(2)*x-2*x**2-1/2*x)+10,x)

[Out]

10*x - exp(-2*x**2 - x/2 + x*exp(2))

________________________________________________________________________________________