3.17.22 12x21203x4+e5(126x3609x2)e10+2e5x2+x4dx

Optimal. Leaf size=22 3x(4x401x2)e5+x2

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 28, normalized size of antiderivative = 1.27, number of steps used = 4, number of rules used = 4, integrand size = 43, number of rulesintegrand size = 0.093, Rules used = {28, 1814, 21, 8} 3((4+401e5)x+e5)x2+e51203x

Antiderivative was successfully verified.

[In]

Int[(-12*x^2 - 1203*x^4 + E^5*(12 - 6*x - 3609*x^2))/(E^10 + 2*E^5*x^2 + x^4),x]

[Out]

-1203*x + (3*(E^5 + (4 + 401*E^5)*x))/(E^5 + x^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1814

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rubi steps

integral=12x21203x4+e5(126x3609x2)(e5+x2)2dx=3(e5+(4+401e5)x)e5+x22406e10+2406e5x2e5+x2dx2e5=3(e5+(4+401e5)x)e5+x212031dx=1203x+3(e5+(4+401e5)x)e5+x2

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 23, normalized size = 1.05 3(e5+4x401x3)e5+x2

Antiderivative was successfully verified.

[In]

Integrate[(-12*x^2 - 1203*x^4 + E^5*(12 - 6*x - 3609*x^2))/(E^10 + 2*E^5*x^2 + x^4),x]

[Out]

(3*(E^5 + 4*x - 401*x^3))/(E^5 + x^2)

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 23, normalized size = 1.05 3(401x34xe5)x2+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3609*x^2-6*x+12)*exp(5)-1203*x^4-12*x^2)/(exp(5)^2+2*x^2*exp(5)+x^4),x, algorithm="fricas")

[Out]

-3*(401*x^3 - 4*x - e^5)/(x^2 + e^5)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: NotImplementedError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3609*x^2-6*x+12)*exp(5)-1203*x^4-12*x^2)/(exp(5)^2+2*x^2*exp(5)+x^4),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: -3*(sqrt(exp(5)^2-exp(10))*(4*exp(5)^3-4
*exp(5)*exp(10)+exp(5)-4*exp(10))/(8*exp(10)^2-16*exp(10)*exp(5)^2+8*exp(10)*exp(5)-2*exp(10)+8*exp(5)^4-8*exp
(5)^3+2*exp(5)^2)*ln(

________________________________________________________________________________________

maple [A]  time = 0.07, size = 22, normalized size = 1.00




method result size



gosper 12x1203x3+3e5x2+e5 22
norman 12x1203x3+3e5x2+e5 23
risch 1203x+(1203e5+12)x+3e5x2+e5 27
default 1203x3(e5(802e10+8e5)x2e5)x2+e5 68



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3609*x^2-6*x+12)*exp(5)-1203*x^4-12*x^2)/(exp(5)^2+2*x^2*exp(5)+x^4),x,method=_RETURNVERBOSE)

[Out]

3*(-401*x^3+exp(5)+4*x)/(x^2+exp(5))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 25, normalized size = 1.14 1203x+3(x(401e5+4)+e5)x2+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3609*x^2-6*x+12)*exp(5)-1203*x^4-12*x^2)/(exp(5)^2+2*x^2*exp(5)+x^4),x, algorithm="maxima")

[Out]

-1203*x + 3*(x*(401*e^5 + 4) + e^5)/(x^2 + e^5)

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 21, normalized size = 0.95 3(401x3+4x+e5)x2+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(5)*(6*x + 3609*x^2 - 12) + 12*x^2 + 1203*x^4)/(exp(10) + 2*x^2*exp(5) + x^4),x)

[Out]

(3*(4*x + exp(5) - 401*x^3))/(exp(5) + x^2)

________________________________________________________________________________________

sympy [A]  time = 0.41, size = 26, normalized size = 1.18 1203xx(1203e512)3e5x2+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3609*x**2-6*x+12)*exp(5)-1203*x**4-12*x**2)/(exp(5)**2+2*x**2*exp(5)+x**4),x)

[Out]

-1203*x - (x*(-1203*exp(5) - 12) - 3*exp(5))/(x**2 + exp(5))

________________________________________________________________________________________