3.17.23 102ex+(5+ex(1+x))log(4x2)log2(4x2)dx

Optimal. Leaf size=15 (5+ex)xlog(4x2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 25, normalized size of antiderivative = 1.67, number of steps used = 10, number of rules used = 6, integrand size = 32, number of rulesintegrand size = 0.188, Rules used = {6742, 2360, 2297, 2300, 2178, 2288} exxlog(4x2)5xlog(4x2)

Antiderivative was successfully verified.

[In]

Int[(10 - 2*E^x + (-5 + E^x*(1 + x))*Log[4*x^2])/Log[4*x^2]^2,x]

[Out]

(-5*x)/Log[4*x^2] + (E^x*x)/Log[4*x^2]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2300

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2360

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Log[(c_.)*(x_)^(n_.)]*(e_.) + (d_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*Log[c*x^n])^p*(d + e*Log[c*x^n])^q, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[p
] && IntegerQ[q]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(5(2+log(4x2))log2(4x2)+ex(2+log(4x2)+xlog(4x2))log2(4x2))dx=(52+log(4x2)log2(4x2)dx)+ex(2+log(4x2)+xlog(4x2))log2(4x2)dx=exxlog(4x2)5(2log2(4x2)+1log(4x2))dx=exxlog(4x2)51log(4x2)dx+101log2(4x2)dx=5xlog(4x2)+exxlog(4x2)+51log(4x2)dx(5x)Subst(ex/2xdx,x,log(4x2))4x2=5xEi(12log(4x2))4x25xlog(4x2)+exxlog(4x2)+(5x)Subst(ex/2xdx,x,log(4x2))4x2=5xlog(4x2)+exxlog(4x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 15, normalized size = 1.00 (5+ex)xlog(4x2)

Antiderivative was successfully verified.

[In]

Integrate[(10 - 2*E^x + (-5 + E^x*(1 + x))*Log[4*x^2])/Log[4*x^2]^2,x]

[Out]

((-5 + E^x)*x)/Log[4*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 17, normalized size = 1.13 xex5xlog(4x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+1)*exp(1/2*x)^2-5)*log(4*x^2)-2*exp(1/2*x)^2+10)/log(4*x^2)^2,x, algorithm="fricas")

[Out]

(x*e^x - 5*x)/log(4*x^2)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 17, normalized size = 1.13 xex5xlog(4x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+1)*exp(1/2*x)^2-5)*log(4*x^2)-2*exp(1/2*x)^2+10)/log(4*x^2)^2,x, algorithm="giac")

[Out]

(x*e^x - 5*x)/log(4*x^2)

________________________________________________________________________________________

maple [A]  time = 0.38, size = 22, normalized size = 1.47




method result size



norman exx5xln(4x2) 22
default 5xln(4x2)+xexln(4x2) 29
risch 2ix(ex5)πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix2)3+4iln(2)+4iln(x) 66



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((x+1)*exp(1/2*x)^2-5)*ln(4*x^2)-2*exp(1/2*x)^2+10)/ln(4*x^2)^2,x,method=_RETURNVERBOSE)

[Out]

(x*exp(1/2*x)^2-5*x)/ln(4*x^2)

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 17, normalized size = 1.13 xex5x2(log(2)+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+1)*exp(1/2*x)^2-5)*log(4*x^2)-2*exp(1/2*x)^2+10)/log(4*x^2)^2,x, algorithm="maxima")

[Out]

1/2*(x*e^x - 5*x)/(log(2) + log(x))

________________________________________________________________________________________

mupad [B]  time = 1.08, size = 14, normalized size = 0.93 x(ex5)ln(4x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(4*x^2)*(exp(x)*(x + 1) - 5) - 2*exp(x) + 10)/log(4*x^2)^2,x)

[Out]

(x*(exp(x) - 5))/log(4*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 20, normalized size = 1.33 xexlog(4x2)5xlog(4x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x+1)*exp(1/2*x)**2-5)*ln(4*x**2)-2*exp(1/2*x)**2+10)/ln(4*x**2)**2,x)

[Out]

x*exp(x)/log(4*x**2) - 5*x/log(4*x**2)

________________________________________________________________________________________