3.17.26 145(1020+90e5+46e25(5+23x)+90x+e15(5+23x)(1594+138e5+138x))dx

Optimal. Leaf size=23 (11+e5+13(1+e1+23x5)+x)2

________________________________________________________________________________________

Rubi [B]  time = 0.05, antiderivative size = 71, normalized size of antiderivative = 3.09, number of steps used = 5, number of rules used = 3, integrand size = 49, number of rulesintegrand size = 0.061, Rules used = {12, 2194, 2176} x2+23(34+3e5)x1069e15(23x+5)+19e25(23x+5)+2207e15(23x+5)(69x+69e5+797)

Antiderivative was successfully verified.

[In]

Int[(1020 + 90*E^5 + 46*E^((2*(5 + 23*x))/5) + 90*x + E^((5 + 23*x)/5)*(1594 + 138*E^5 + 138*x))/45,x]

[Out]

(-10*E^((5 + 23*x)/5))/69 + E^((2*(5 + 23*x))/5)/9 + (2*(34 + 3*E^5)*x)/3 + x^2 + (2*E^((5 + 23*x)/5)*(797 + 6
9*E^5 + 69*x))/207

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=145(1020+90e5+46e25(5+23x)+90x+e15(5+23x)(1594+138e5+138x))dx=23(34+3e5)x+x2+145e15(5+23x)(1594+138e5+138x)dx+4645e25(5+23x)dx=19e25(5+23x)+23(34+3e5)x+x2+2207e15(5+23x)(797+69e5+69x)23e15(5+23x)dx=1069e15(5+23x)+19e25(5+23x)+23(34+3e5)x+x2+2207e15(5+23x)(797+69e5+69x)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 25, normalized size = 1.09 19(34+3e5+e1+23x5+3x)2

Antiderivative was successfully verified.

[In]

Integrate[(1020 + 90*E^5 + 46*E^((2*(5 + 23*x))/5) + 90*x + E^((5 + 23*x)/5)*(1594 + 138*E^5 + 138*x))/45,x]

[Out]

(34 + 3*E^5 + E^(1 + (23*x)/5) + 3*x)^2/9

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 37, normalized size = 1.61 x2+2xe5+29(3x+3e5+34)e(235x+1)+683x+19e(465x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(46/45*exp(23/5*x+1)^2+1/45*(138*exp(5)+138*x+1594)*exp(23/5*x+1)+2*exp(5)+2*x+68/3,x, algorithm="fri
cas")

[Out]

x^2 + 2*x*e^5 + 2/9*(3*x + 3*e^5 + 34)*e^(23/5*x + 1) + 68/3*x + 1/9*e^(46/5*x + 2)

________________________________________________________________________________________

giac [B]  time = 0.23, size = 41, normalized size = 1.78 x2+2xe5+29(3x+34)e(235x+1)+683x+19e(465x+2)+23e(235x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(46/45*exp(23/5*x+1)^2+1/45*(138*exp(5)+138*x+1594)*exp(23/5*x+1)+2*exp(5)+2*x+68/3,x, algorithm="gia
c")

[Out]

x^2 + 2*x*e^5 + 2/9*(3*x + 34)*e^(23/5*x + 1) + 68/3*x + 1/9*e^(46/5*x + 2) + 2/3*e^(23/5*x + 6)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 38, normalized size = 1.65




method result size



risch e46x5+29+(30e5+340+30x)e23x5+145+2xe5+x2+68x3 38
norman x2+(689+2e53)e23x5+1+(2e5+683)x+e46x5+29+2e23x5+1x3 45
default 68x3+x2+e46x5+29+10e23x5+1(23x5+1)69+1534e23x5+1207+2e23x5+1e53+2xe5 54
derivativedivides 1534x69+76701587+25(23x5+1)2529+e46x5+29+10e23x5+1(23x5+1)69+1534e23x5+1207+2e23x5+1e53+10e5(23x5+1)23 65



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(46/45*exp(23/5*x+1)^2+1/45*(138*exp(5)+138*x+1594)*exp(23/5*x+1)+2*exp(5)+2*x+68/3,x,method=_RETURNVERBOSE
)

[Out]

1/9*exp(46/5*x+2)+1/45*(30*exp(5)+340+30*x)*exp(23/5*x+1)+2*x*exp(5)+x^2+68/3*x

________________________________________________________________________________________

maxima [B]  time = 0.38, size = 40, normalized size = 1.74 x2+2xe5+29(3xe+3e6+34e)e(235x)+683x+19e(465x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(46/45*exp(23/5*x+1)^2+1/45*(138*exp(5)+138*x+1594)*exp(23/5*x+1)+2*exp(5)+2*x+68/3,x, algorithm="max
ima")

[Out]

x^2 + 2*x*e^5 + 2/9*(3*x*e + 3*e^6 + 34*e)*e^(23/5*x) + 68/3*x + 1/9*e^(46/5*x + 2)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 27, normalized size = 1.17 (3x+e23x5+1)(3x+6e5+e23x5+1+68)9

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*x + 2*exp(5) + (46*exp((46*x)/5 + 2))/45 + (exp((23*x)/5 + 1)*(138*x + 138*exp(5) + 1594))/45 + 68/3,x)

[Out]

((3*x + exp((23*x)/5 + 1))*(3*x + 6*exp(5) + exp((23*x)/5 + 1) + 68))/9

________________________________________________________________________________________

sympy [B]  time = 0.14, size = 42, normalized size = 1.83 x2+x(683+2e5)+(54x+612+54e5)e23x5+181+e46x5+29

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(46/45*exp(23/5*x+1)**2+1/45*(138*exp(5)+138*x+1594)*exp(23/5*x+1)+2*exp(5)+2*x+68/3,x)

[Out]

x**2 + x*(68/3 + 2*exp(5)) + (54*x + 612 + 54*exp(5))*exp(23*x/5 + 1)/81 + exp(46*x/5 + 2)/9

________________________________________________________________________________________