3.17.25 12+x2+x2log(3)4x2dx

Optimal. Leaf size=19 5+3+xx+14(x+xlog(3))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 0.79, number of steps used = 4, number of rules used = 3, integrand size = 18, number of rulesintegrand size = 0.167, Rules used = {6, 12, 14} 14x(1+log(3))3x

Antiderivative was successfully verified.

[In]

Int[(12 + x^2 + x^2*Log[3])/(4*x^2),x]

[Out]

-3/x + (x*(1 + Log[3]))/4

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=12+x2(1+log(3))4x2dx=1412+x2(1+log(3))x2dx=14(1+12x2+log(3))dx=3x+14x(1+log(3))

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 15, normalized size = 0.79 14(12x+x+xlog(3))

Antiderivative was successfully verified.

[In]

Integrate[(12 + x^2 + x^2*Log[3])/(4*x^2),x]

[Out]

(-12/x + x + x*Log[3])/4

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 16, normalized size = 0.84 x2log(3)+x2124x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(x^2*log(3)+x^2+12)/x^2,x, algorithm="fricas")

[Out]

1/4*(x^2*log(3) + x^2 - 12)/x

________________________________________________________________________________________

giac [A]  time = 0.29, size = 14, normalized size = 0.74 14xlog(3)+14x3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(x^2*log(3)+x^2+12)/x^2,x, algorithm="giac")

[Out]

1/4*x*log(3) + 1/4*x - 3/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 15, normalized size = 0.79




method result size



default xln(3)4+x43x 15
risch xln(3)4+x43x 15
gosper x2ln(3)+x2124x 17
norman 3+(ln(3)4+14)x2x 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(x^2*ln(3)+x^2+12)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/4*x*ln(3)+1/4*x-3/x

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 13, normalized size = 0.68 14x(log(3)+1)3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(x^2*log(3)+x^2+12)/x^2,x, algorithm="maxima")

[Out]

1/4*x*(log(3) + 1) - 3/x

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 14, normalized size = 0.74 x(ln(3)4+14)3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^2*log(3))/4 + x^2/4 + 3)/x^2,x)

[Out]

x*(log(3)/4 + 1/4) - 3/x

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 10, normalized size = 0.53 x(1+log(3))43x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(x**2*ln(3)+x**2+12)/x**2,x)

[Out]

x*(1 + log(3))/4 - 3/x

________________________________________________________________________________________