3.17.30 1+eee4x(20x+4exx+ee4x+4x(16x4exx))+5xlog(x)eee4x(20x+5exx)+5xlog(x)dx

Optimal. Leaf size=28 x15log(eee4x(4ex)+log(x))

________________________________________________________________________________________

Rubi [F]  time = 44.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 1+eee4x(20x+4exx+ee4x+4x(16x4exx))+5xlog(x)eee4x(20x+5exx)+5xlog(x)dx

Verification is not applicable to the result.

[In]

Int[(-1 + E^E^E^(4*x)*(-20*x + 4*E^x*x + E^(E^(4*x) + 4*x)*(16*x - 4*E^x*x)) + 5*x*Log[x])/(E^E^E^(4*x)*(-20*x
 + 5*E^x*x) + 5*x*Log[x]),x]

[Out]

-1/5*E^E^(4*x) + (4*x)/5 - (192*Defer[Int][E^(-2*E^E^(4*x) + E^(4*x))*Log[x]^2, x])/5 - (32*Defer[Int][E^(-2*E
^E^(4*x) + E^(4*x) + x)*Log[x]^2, x])/5 - (4*Defer[Int][E^(-2*E^E^(4*x) + E^(4*x) + 2*x)*Log[x]^2, x])/5 + (48
*Defer[Int][E^(-3*E^E^(4*x) + E^(4*x))*Log[x]^3, x])/5 + (4*Defer[Int][E^(-3*E^E^(4*x) + E^(4*x) + x)*Log[x]^3
, x])/5 - (4*Defer[Int][E^(-4*E^E^(4*x) + E^(4*x))*Log[x]^4, x])/5 - (4*Defer[Int][E^E^E^(4*x)/(E^E^E^(4*x)*(-
4 + E^x) + Log[x]), x])/5 - Defer[Int][1/(x*(E^E^E^(4*x)*(-4 + E^x) + Log[x])), x]/5 + Defer[Int][Log[x]/(E^E^
E^(4*x)*(-4 + E^x) + Log[x]), x]/5 + (1024*Defer[Int][(E^E^(4*x)*Log[x])/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x]
)/5 - (1024*Defer[Int][(E^(-E^E^(4*x) + E^(4*x))*Log[x]^2)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 + (384*Def
er[Int][(E^(-2*E^E^(4*x) + E^(4*x))*Log[x]^3)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 - (64*Defer[Int][(E^(-3
*E^E^(4*x) + E^(4*x))*Log[x]^4)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 + (4*Defer[Int][(E^(-4*E^E^(4*x) + E^
(4*x))*Log[x]^5)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 - (8*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x^2 +
x^2), x], x, E^(2*x)]/x, x])/5 - (64*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x^4 + x^4), x], x, E^x]/x, x])/5
 - (64*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x + x)/x, x], x, E^(4*x)]/x, x])/5 - (4*Defer[Int][Defer[Subst
][Defer[Int][E^(-E^x^4 + x^4)*x^2, x], x, E^x]/x, x])/5 + (8*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^2 + x^2),
x], x, E^(2*x)])/5 + (64*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^4 + x^4), x], x, E^x])/5 + (64*Log[x]*Defer[Su
bst][Defer[Int][E^(-E^x + x)/x, x], x, E^(4*x)])/5 + (4*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^4 + x^4)*x^2, x
], x, E^x])/5

Rubi steps

integral=1eee4x(20x+4exx+ee4x+4x(16x4exx))5xlog(x)5x(4eee4xeee4x+xlog(x))dx=151eee4x(20x+4exx+ee4x+4x(16x4exx))5xlog(x)x(4eee4xeee4x+xlog(x))dx=15(4ee4x+4x+4eee4x+e4x+3xlog(x)+4e2ee4x+e4x+2x(4eee4xlog(x))log(x)+4e3ee4x+e4x+x(4eee4xlog(x))2log(x)+4e4ee4x(e4ee4x+64e3ee4x+e4xlog(x)48e2ee4x+e4xlog2(x)+12eee4x+e4xlog3(x)ee4xlog4(x))e4ee4x(e4ee4x+4e5ee4xxe4ee4xxlog(x)1024e4ee4x+e4xxlog(x)+1024e3ee4x+e4xxlog2(x)384e2ee4x+e4xxlog3(x)+64eee4x+e4xxlog4(x)4ee4xxlog5(x))x(4eee4x+eee4x+x+log(x)))dx=(15e4ee4x(e4ee4x+4e5ee4xxe4ee4xxlog(x)1024e4ee4x+e4xxlog(x)+1024e3ee4x+e4xxlog2(x)384e2ee4x+e4xxlog3(x)+64eee4x+e4xxlog4(x)4ee4xxlog5(x))x(4eee4x+eee4x+x+log(x))dx)45ee4x+4xdx+45eee4x+e4x+3xlog(x)dx+45e2ee4x+e4x+2x(4eee4xlog(x))log(x)dx+45e3ee4x+e4x+x(4eee4xlog(x))2log(x)dx+45e4ee4x(e4ee4x+64e3ee4x+e4xlog(x)48e2ee4x+e4xlog2(x)+12eee4x+e4xlog3(x)ee4xlog4(x))dx=(15(4eee4x4eee4x+eee4x+x+log(x)+1x(4eee4x+eee4x+x+log(x))log(x)4eee4x+eee4x+x+log(x)1024ee4xlog(x)4eee4x+eee4x+x+log(x)+1024eee4x+e4xlog2(x)4eee4x+eee4x+x+log(x)384e2ee4x+e4xlog3(x)4eee4x+eee4x+x+log(x)+64e3ee4x+e4xlog4(x)4eee4x+eee4x+x+log(x)4e4ee4x+e4xlog5(x)4eee4x+eee4x+x+log(x))dx)15Subst(exdx,x,e4x)+45(4eee4x+e4x+2xlog(x)e2ee4x+e4x+2xlog2(x))dx+45(16eee4x+e4x+xlog(x)8e2ee4x+e4x+xlog2(x)+e3ee4x+e4x+xlog3(x))dx+45(1+64eee4x+e4xlog(x)48e2ee4x+e4xlog2(x)+12e3ee4x+e4xlog3(x)e4ee4x+e4xlog4(x))dx45Subst(eex4+x4x2dx,x,ex)xdx+15(4log(x))Subst(eex4+x4x2dx,x,ex)=15ee4x+4x5151x(4eee4x+eee4x+x+log(x))dx+15log(x)4eee4x+eee4x+x+log(x)dx45e2ee4x+e4x+2xlog2(x)dx+45e3ee4x+e4x+xlog3(x)dx45e4ee4x+e4xlog4(x)dx45eee4x4eee4x+eee4x+x+log(x)dx+45e4ee4x+e4xlog5(x)4eee4x+eee4x+x+log(x)dx45Subst(eex4+x4x2dx,x,ex)xdx+165eee4x+e4x+2xlog(x)dx325e2ee4x+e4x+xlog2(x)dx+485e3ee4x+e4xlog3(x)dx+645eee4x+e4x+xlog(x)dx645e3ee4x+e4xlog4(x)4eee4x+eee4x+x+log(x)dx1925e2ee4x+e4xlog2(x)dx+2565eee4x+e4xlog(x)dx+3845e2ee4x+e4xlog3(x)4eee4x+eee4x+x+log(x)dx+10245ee4xlog(x)4eee4x+eee4x+x+log(x)dx10245eee4x+e4xlog2(x)4eee4x+eee4x+x+log(x)dx+15(4log(x))Subst(eex4+x4x2dx,x,ex)=15ee4x+4x5151x(eee4x(4+ex)+log(x))dx+15log(x)eee4x(4+ex)+log(x)dx45e2ee4x+e4x+2xlog2(x)dx+45e3ee4x+e4x+xlog3(x)dx45e4ee4x+e4xlog4(x)dx45eee4xeee4x(4+ex)+log(x)dx+45e4ee4x+e4xlog5(x)eee4x(4+ex)+log(x)dx45Subst(eex4+x4x2dx,x,ex)xdx165Subst(eex2+x2dx,x,e2x)2xdx325e2ee4x+e4x+xlog2(x)dx+485e3ee4x+e4xlog3(x)dx645e3ee4x+e4xlog4(x)eee4x(4+ex)+log(x)dx645Subst(eex4+x4dx,x,ex)xdx1925e2ee4x+e4xlog2(x)dx2565Subst(eex+xxdx,x,e4x)4xdx+3845e2ee4x+e4xlog3(x)eee4x(4+ex)+log(x)dx+10245ee4xlog(x)eee4x(4+ex)+log(x)dx10245eee4x+e4xlog2(x)eee4x(4+ex)+log(x)dx+15(4log(x))Subst(eex4+x4x2dx,x,ex)+15(8log(x))Subst(eex2+x2dx,x,e2x)+15(64log(x))Subst(eex4+x4dx,x,ex)+15(64log(x))Subst(eex+xxdx,x,e4x)=15ee4x+4x5151x(eee4x(4+ex)+log(x))dx+15log(x)eee4x(4+ex)+log(x)dx45e2ee4x+e4x+2xlog2(x)dx+45e3ee4x+e4x+xlog3(x)dx45e4ee4x+e4xlog4(x)dx45eee4xeee4x(4+ex)+log(x)dx+45e4ee4x+e4xlog5(x)eee4x(4+ex)+log(x)dx45Subst(eex4+x4x2dx,x,ex)xdx85Subst(eex2+x2dx,x,e2x)xdx325e2ee4x+e4x+xlog2(x)dx+485e3ee4x+e4xlog3(x)dx645e3ee4x+e4xlog4(x)eee4x(4+ex)+log(x)dx645Subst(eex4+x4dx,x,ex)xdx645Subst(eex+xxdx,x,e4x)xdx1925e2ee4x+e4xlog2(x)dx+3845e2ee4x+e4xlog3(x)eee4x(4+ex)+log(x)dx+10245ee4xlog(x)eee4x(4+ex)+log(x)dx10245eee4x+e4xlog2(x)eee4x(4+ex)+log(x)dx+15(4log(x))Subst(eex4+x4x2dx,x,ex)+15(8log(x))Subst(eex2+x2dx,x,e2x)+15(64log(x))Subst(eex4+x4dx,x,ex)+15(64log(x))Subst(eex+xxdx,x,e4x)

________________________________________________________________________________________

Mathematica [A]  time = 0.99, size = 36, normalized size = 1.29 15(5xlog(4eee4x+eee4x+x+log(x)))

Antiderivative was successfully verified.

[In]

Integrate[(-1 + E^E^E^(4*x)*(-20*x + 4*E^x*x + E^(E^(4*x) + 4*x)*(16*x - 4*E^x*x)) + 5*x*Log[x])/(E^E^E^(4*x)*
(-20*x + 5*E^x*x) + 5*x*Log[x]),x]

[Out]

(5*x - Log[-4*E^E^E^(4*x) + E^(E^E^(4*x) + x) + Log[x]])/5

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 33, normalized size = 1.18 x15log((ex4)e(e(e(4x)))+log(x)ex4)15log(ex4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="fricas")

[Out]

x - 1/5*log(((e^x - 4)*e^(e^(e^(4*x))) + log(x))/(e^x - 4)) - 1/5*log(e^x - 4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 4((xex4x)e(4x+e(4x))xex+5x)e(e(e(4x)))5xlog(x)+15((xex4x)e(e(e(4x)))+xlog(x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="giac")

[Out]

integrate(-1/5*(4*((x*e^x - 4*x)*e^(4*x + e^(4*x)) - x*e^x + 5*x)*e^(e^(e^(4*x))) - 5*x*log(x) + 1)/((x*e^x -
4*x)*e^(e^(e^(4*x))) + x*log(x)), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 29, normalized size = 1.04




method result size



risch xln(ex4)5ln(eee4x+ln(x)ex4)5 29



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)-1)/((5*exp(x)*x-
20*x)*exp(exp(exp(4*x)))+5*x*ln(x)),x,method=_RETURNVERBOSE)

[Out]

x-1/5*ln(exp(x)-4)-1/5*ln(exp(exp(exp(4*x)))+ln(x)/(exp(x)-4))

________________________________________________________________________________________

maxima [A]  time = 0.63, size = 33, normalized size = 1.18 x15log((ex4)e(e(e(4x)))+log(x)ex4)15log(ex4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="maxima")

[Out]

x - 1/5*log(((e^x - 4)*e^(e^(e^(4*x))) + log(x))/(e^x - 4)) - 1/5*log(e^x - 4)

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 39, normalized size = 1.39 xln(ln(x)4eee4x+eee4xexex4)5ln(ex4)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(exp(exp(4*x)))*(4*x*exp(x) - 20*x + exp(4*x)*exp(exp(4*x))*(16*x - 4*x*exp(x))) + 5*x*log(x) - 1)/(e
xp(exp(exp(4*x)))*(20*x - 5*x*exp(x)) - 5*x*log(x)),x)

[Out]

x - log((log(x) - 4*exp(exp(exp(4*x))) + exp(exp(exp(4*x)))*exp(x))/(exp(x) - 4))/5 - log(exp(x) - 4)/5

________________________________________________________________________________________

sympy [A]  time = 1.14, size = 29, normalized size = 1.04 xlog(ex4)5log(eee4x+log(x)ex4)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)-1)/((5*exp
(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)),x)

[Out]

x - log(exp(x) - 4)/5 - log(exp(exp(exp(4*x))) + log(x)/(exp(x) - 4))/5

________________________________________________________________________________________