3.17.30
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 44.36, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-1 + E^E^E^(4*x)*(-20*x + 4*E^x*x + E^(E^(4*x) + 4*x)*(16*x - 4*E^x*x)) + 5*x*Log[x])/(E^E^E^(4*x)*(-20*x
+ 5*E^x*x) + 5*x*Log[x]),x]
[Out]
-1/5*E^E^(4*x) + (4*x)/5 - (192*Defer[Int][E^(-2*E^E^(4*x) + E^(4*x))*Log[x]^2, x])/5 - (32*Defer[Int][E^(-2*E
^E^(4*x) + E^(4*x) + x)*Log[x]^2, x])/5 - (4*Defer[Int][E^(-2*E^E^(4*x) + E^(4*x) + 2*x)*Log[x]^2, x])/5 + (48
*Defer[Int][E^(-3*E^E^(4*x) + E^(4*x))*Log[x]^3, x])/5 + (4*Defer[Int][E^(-3*E^E^(4*x) + E^(4*x) + x)*Log[x]^3
, x])/5 - (4*Defer[Int][E^(-4*E^E^(4*x) + E^(4*x))*Log[x]^4, x])/5 - (4*Defer[Int][E^E^E^(4*x)/(E^E^E^(4*x)*(-
4 + E^x) + Log[x]), x])/5 - Defer[Int][1/(x*(E^E^E^(4*x)*(-4 + E^x) + Log[x])), x]/5 + Defer[Int][Log[x]/(E^E^
E^(4*x)*(-4 + E^x) + Log[x]), x]/5 + (1024*Defer[Int][(E^E^(4*x)*Log[x])/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x]
)/5 - (1024*Defer[Int][(E^(-E^E^(4*x) + E^(4*x))*Log[x]^2)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 + (384*Def
er[Int][(E^(-2*E^E^(4*x) + E^(4*x))*Log[x]^3)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 - (64*Defer[Int][(E^(-3
*E^E^(4*x) + E^(4*x))*Log[x]^4)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 + (4*Defer[Int][(E^(-4*E^E^(4*x) + E^
(4*x))*Log[x]^5)/(E^E^E^(4*x)*(-4 + E^x) + Log[x]), x])/5 - (8*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x^2 +
x^2), x], x, E^(2*x)]/x, x])/5 - (64*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x^4 + x^4), x], x, E^x]/x, x])/5
- (64*Defer[Int][Defer[Subst][Defer[Int][E^(-E^x + x)/x, x], x, E^(4*x)]/x, x])/5 - (4*Defer[Int][Defer[Subst
][Defer[Int][E^(-E^x^4 + x^4)*x^2, x], x, E^x]/x, x])/5 + (8*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^2 + x^2),
x], x, E^(2*x)])/5 + (64*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^4 + x^4), x], x, E^x])/5 + (64*Log[x]*Defer[Su
bst][Defer[Int][E^(-E^x + x)/x, x], x, E^(4*x)])/5 + (4*Log[x]*Defer[Subst][Defer[Int][E^(-E^x^4 + x^4)*x^2, x
], x, E^x])/5
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.99, size = 36, normalized size = 1.29
Antiderivative was successfully verified.
[In]
Integrate[(-1 + E^E^E^(4*x)*(-20*x + 4*E^x*x + E^(E^(4*x) + 4*x)*(16*x - 4*E^x*x)) + 5*x*Log[x])/(E^E^E^(4*x)*
(-20*x + 5*E^x*x) + 5*x*Log[x]),x]
[Out]
(5*x - Log[-4*E^E^E^(4*x) + E^(E^E^(4*x) + x) + Log[x]])/5
________________________________________________________________________________________
fricas [A] time = 0.88, size = 33, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="fricas")
[Out]
x - 1/5*log(((e^x - 4)*e^(e^(e^(4*x))) + log(x))/(e^x - 4)) - 1/5*log(e^x - 4)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="giac")
[Out]
integrate(-1/5*(4*((x*e^x - 4*x)*e^(4*x + e^(4*x)) - x*e^x + 5*x)*e^(e^(e^(4*x))) - 5*x*log(x) + 1)/((x*e^x -
4*x)*e^(e^(e^(4*x))) + x*log(x)), x)
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)-1)/((5*exp(x)*x-
20*x)*exp(exp(exp(4*x)))+5*x*ln(x)),x,method=_RETURNVERBOSE)
[Out]
x-1/5*ln(exp(x)-4)-1/5*ln(exp(exp(exp(4*x)))+ln(x)/(exp(x)-4))
________________________________________________________________________________________
maxima [A] time = 0.63, size = 33, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)-1)/((5*ex
p(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*log(x)),x, algorithm="maxima")
[Out]
x - 1/5*log(((e^x - 4)*e^(e^(e^(4*x))) + log(x))/(e^x - 4)) - 1/5*log(e^x - 4)
________________________________________________________________________________________
mupad [B] time = 1.28, size = 39, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(exp(exp(4*x)))*(4*x*exp(x) - 20*x + exp(4*x)*exp(exp(4*x))*(16*x - 4*x*exp(x))) + 5*x*log(x) - 1)/(e
xp(exp(exp(4*x)))*(20*x - 5*x*exp(x)) - 5*x*log(x)),x)
[Out]
x - log((log(x) - 4*exp(exp(exp(4*x))) + exp(exp(exp(4*x)))*exp(x))/(exp(x) - 4))/5 - log(exp(x) - 4)/5
________________________________________________________________________________________
sympy [A] time = 1.14, size = 29, normalized size = 1.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*exp(x)*x+16*x)*exp(4*x)*exp(exp(4*x))+4*exp(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)-1)/((5*exp
(x)*x-20*x)*exp(exp(exp(4*x)))+5*x*ln(x)),x)
[Out]
x - log(exp(x) - 4)/5 - log(exp(exp(exp(4*x))) + log(x)/(exp(x) - 4))/5
________________________________________________________________________________________