3.17.31 512x5+768x6+256x7+ex(512x3+512x4+1152x5+384x6)+(1024x41280x5384x6+ex(1024x31280x4384x5))log(ex+xx)exx3x4+(3exx2+3x3)log(ex+xx)+(3exx3x2)log2(ex+xx)+(ex+x)log3(ex+xx)dx

Optimal. Leaf size=29 3+e64x4(2+x)2(xlog(ex+xx))2

________________________________________________________________________________________

Rubi [F]  time = 5.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 512x5+768x6+256x7+ex(512x3+512x4+1152x5+384x6)+(1024x41280x5384x6+ex(1024x31280x4384x5))log(ex+xx)exx3x4+(3exx2+3x3)log(ex+xx)+(3exx3x2)log2(ex+xx)+(ex+x)log3(ex+xx)dx

Verification is not applicable to the result.

[In]

Int[(512*x^5 + 768*x^6 + 256*x^7 + E^x*(-512*x^3 + 512*x^4 + 1152*x^5 + 384*x^6) + (-1024*x^4 - 1280*x^5 - 384
*x^6 + E^x*(-1024*x^3 - 1280*x^4 - 384*x^5))*Log[(E^x + x)/x])/(-(E^x*x^3) - x^4 + (3*E^x*x^2 + 3*x^3)*Log[(E^
x + x)/x] + (-3*E^x*x - 3*x^2)*Log[(E^x + x)/x]^2 + (E^x + x)*Log[(E^x + x)/x]^3),x]

[Out]

512*Defer[Int][x^3/(x - Log[(E^x + x)/x])^3, x] + 512*Defer[Int][x^4/(x - Log[(E^x + x)/x])^3, x] + 128*Defer[
Int][x^5/(x - Log[(E^x + x)/x])^3, x] - 512*Defer[Int][x^4/((E^x + x)*(x - Log[(E^x + x)/x])^3), x] + 384*Defe
r[Int][x^6/((E^x + x)*(x - Log[(E^x + x)/x])^3), x] + 128*Defer[Int][x^7/((E^x + x)*(x - Log[(E^x + x)/x])^3),
 x] - 1024*Defer[Int][x^3/(x - Log[(E^x + x)/x])^2, x] - 1280*Defer[Int][x^4/(x - Log[(E^x + x)/x])^2, x] - 38
4*Defer[Int][x^5/(x - Log[(E^x + x)/x])^2, x]

Rubi steps

integral=128x3(2+x)(2x2(1+x)ex(2+3x+3x2)+(ex+x)(4+3x)log(ex+xx))(ex+x)(xlog(ex+xx))3dx=128x3(2+x)(2x2(1+x)ex(2+3x+3x2)+(ex+x)(4+3x)log(ex+xx))(ex+x)(xlog(ex+xx))3dx=128((1+x)x4(2+x)2(ex+x)(xlog(ex+xx))3x3(2+x)(2+3x+3x24log(ex+xx)3xlog(ex+xx))(xlog(ex+xx))3)dx=128(1+x)x4(2+x)2(ex+x)(xlog(ex+xx))3dx128x3(2+x)(2+3x+3x24log(ex+xx)3xlog(ex+xx))(xlog(ex+xx))3dx=128(4x4(ex+x)(xlog(ex+xx))3+3x6(ex+x)(xlog(ex+xx))3+x7(ex+x)(xlog(ex+xx))3)dx128(x3(2+x)2(xlog(ex+xx))3+x3(8+10x+3x2)(xlog(ex+xx))2)dx=128x3(2+x)2(xlog(ex+xx))3dx+128x7(ex+x)(xlog(ex+xx))3dx128x3(8+10x+3x2)(xlog(ex+xx))2dx+384x6(ex+x)(xlog(ex+xx))3dx512x4(ex+x)(xlog(ex+xx))3dx=128(4x3(xlog(ex+xx))3+4x4(xlog(ex+xx))3+x5(xlog(ex+xx))3)dx128(8x3(xlog(ex+xx))2+10x4(xlog(ex+xx))2+3x5(xlog(ex+xx))2)dx+128x7(ex+x)(xlog(ex+xx))3dx+384x6(ex+x)(xlog(ex+xx))3dx512x4(ex+x)(xlog(ex+xx))3dx=128x5(xlog(ex+xx))3dx+128x7(ex+x)(xlog(ex+xx))3dx+384x6(ex+x)(xlog(ex+xx))3dx384x5(xlog(ex+xx))2dx+512x3(xlog(ex+xx))3dx+512x4(xlog(ex+xx))3dx512x4(ex+x)(xlog(ex+xx))3dx1024x3(xlog(ex+xx))2dx1280x4(xlog(ex+xx))2dx

________________________________________________________________________________________

Mathematica [A]  time = 1.19, size = 26, normalized size = 0.90 64x4(2+x)2(x+log(ex+xx))2

Antiderivative was successfully verified.

[In]

Integrate[(512*x^5 + 768*x^6 + 256*x^7 + E^x*(-512*x^3 + 512*x^4 + 1152*x^5 + 384*x^6) + (-1024*x^4 - 1280*x^5
 - 384*x^6 + E^x*(-1024*x^3 - 1280*x^4 - 384*x^5))*Log[(E^x + x)/x])/(-(E^x*x^3) - x^4 + (3*E^x*x^2 + 3*x^3)*L
og[(E^x + x)/x] + (-3*E^x*x - 3*x^2)*Log[(E^x + x)/x]^2 + (E^x + x)*Log[(E^x + x)/x]^3),x]

[Out]

(-64*x^4*(2 + x)^2)/(-x + Log[(E^x + x)/x])^2

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 45, normalized size = 1.55 64(x6+4x5+4x4)x22xlog(x+exx)+log(x+exx)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="fricas")

[Out]

-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*x*log((x + e^x)/x) + log((x + e^x)/x)^2)

________________________________________________________________________________________

giac [A]  time = 0.80, size = 45, normalized size = 1.55 64(x6+4x5+4x4)x22xlog(x+exx)+log(x+exx)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="giac")

[Out]

-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*x*log((x + e^x)/x) + log((x + e^x)/x)^2)

________________________________________________________________________________________

maple [C]  time = 0.48, size = 127, normalized size = 4.38




method result size



risch 256(x2+4x+4)x4(iπcsgn(ix)csgn(i(ex+x))csgn(i(ex+x)x)iπcsgn(ix)csgn(i(ex+x)x)2iπcsgn(i(ex+x))csgn(i(ex+x)x)2+iπcsgn(i(ex+x)x)3+2x+2ln(x)2ln(ex+x))2 127



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*ln(1/x*(exp(x)+x))+(384*x^6+1152*x^5+512*
x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*ln(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*ln(1/x*(exp(
x)+x))^2+(3*exp(x)*x^2+3*x^3)*ln(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x,method=_RETURNVERBOSE)

[Out]

-256*(x^2+4*x+4)*x^4/(I*Pi*csgn(I/x)*csgn(I*(exp(x)+x))*csgn(I/x*(exp(x)+x))-I*Pi*csgn(I/x)*csgn(I/x*(exp(x)+x
))^2-I*Pi*csgn(I*(exp(x)+x))*csgn(I/x*(exp(x)+x))^2+I*Pi*csgn(I/x*(exp(x)+x))^3+2*x+2*ln(x)-2*ln(exp(x)+x))^2

________________________________________________________________________________________

maxima [A]  time = 0.68, size = 49, normalized size = 1.69 64(x6+4x5+4x4)x22(x+log(x))log(x+ex)+log(x+ex)2+2xlog(x)+log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="maxima")

[Out]

-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*(x + log(x))*log(x + e^x) + log(x + e^x)^2 + 2*x*log(x) + log(x)^2)

________________________________________________________________________________________

mupad [B]  time = 1.64, size = 540, normalized size = 18.62 64x(x+ex)(24x5ex+48x6ex+43x7ex+19x8ex+3x9ex8x3e2x+22x4e2x+47x5e2x+18x6e2x+16x7+30x8+12x9)(ex+x2)364xln(x+exx)(x+ex)(40x4ex+68x5ex+49x6ex+19x7ex+3x8ex+32x3e2x+50x4e2x+18x5e2x+24x6+40x7+15x8)(ex+x2)3xln(x+exx)+64x4(x+2)(3x2ex2ex+3xex+2x2+2x3)ex+x264x4ln(x+exx)(x+ex)(3x2+10x+8)ex+x2x22xln(x+exx)+ln(x+exx)22048x43200x51152x664(3x11+41x10+13x9188x828x7+144x6)(ex+x2)(2xx2)64(3x15+8x14+13x1346x12+4x11+56x1032x9)(2xx2)(e3x+3x4ex+3x2e2x+x6)+64(6x13+31x12+12x11151x10+50x9+144x880x7)(2xx2)(e2x+2x2ex+x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x)*(512*x^4 - 512*x^3 + 1152*x^5 + 384*x^6) + 512*x^5 + 768*x^6 + 256*x^7 - log((x + exp(x))/x)*(exp
(x)*(1024*x^3 + 1280*x^4 + 384*x^5) + 1024*x^4 + 1280*x^5 + 384*x^6))/(x^3*exp(x) + log((x + exp(x))/x)^2*(3*x
*exp(x) + 3*x^2) - log((x + exp(x))/x)*(3*x^2*exp(x) + 3*x^3) - log((x + exp(x))/x)^3*(x + exp(x)) + x^4),x)

[Out]

((64*x*(x + exp(x))*(24*x^5*exp(x) + 48*x^6*exp(x) + 43*x^7*exp(x) + 19*x^8*exp(x) + 3*x^9*exp(x) - 8*x^3*exp(
2*x) + 22*x^4*exp(2*x) + 47*x^5*exp(2*x) + 18*x^6*exp(2*x) + 16*x^7 + 30*x^8 + 12*x^9))/(exp(x) + x^2)^3 - (64
*x*log((x + exp(x))/x)*(x + exp(x))*(40*x^4*exp(x) + 68*x^5*exp(x) + 49*x^6*exp(x) + 19*x^7*exp(x) + 3*x^8*exp
(x) + 32*x^3*exp(2*x) + 50*x^4*exp(2*x) + 18*x^5*exp(2*x) + 24*x^6 + 40*x^7 + 15*x^8))/(exp(x) + x^2)^3)/(x -
log((x + exp(x))/x)) + ((64*x^4*(x + 2)*(3*x^2*exp(x) - 2*exp(x) + 3*x*exp(x) + 2*x^2 + 2*x^3))/(exp(x) + x^2)
 - (64*x^4*log((x + exp(x))/x)*(x + exp(x))*(10*x + 3*x^2 + 8))/(exp(x) + x^2))/(log((x + exp(x))/x)^2 - 2*x*l
og((x + exp(x))/x) + x^2) - 2048*x^4 - 3200*x^5 - 1152*x^6 - (64*(144*x^6 - 28*x^7 - 188*x^8 + 13*x^9 + 41*x^1
0 - 3*x^11))/((exp(x) + x^2)*(2*x - x^2)) - (64*(56*x^10 - 32*x^9 + 4*x^11 - 46*x^12 + 13*x^13 + 8*x^14 - 3*x^
15))/((2*x - x^2)*(exp(3*x) + 3*x^4*exp(x) + 3*x^2*exp(2*x) + x^6)) + (64*(144*x^8 - 80*x^7 + 50*x^9 - 151*x^1
0 + 12*x^11 + 31*x^12 - 6*x^13))/((2*x - x^2)*(exp(2*x) + 2*x^2*exp(x) + x^4))

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 41, normalized size = 1.41 64x6256x5256x4x22xlog(x+exx)+log(x+exx)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-384*x**5-1280*x**4-1024*x**3)*exp(x)-384*x**6-1280*x**5-1024*x**4)*ln(1/x*(exp(x)+x))+(384*x**6+
1152*x**5+512*x**4-512*x**3)*exp(x)+256*x**7+768*x**6+512*x**5)/((exp(x)+x)*ln(1/x*(exp(x)+x))**3+(-3*exp(x)*x
-3*x**2)*ln(1/x*(exp(x)+x))**2+(3*exp(x)*x**2+3*x**3)*ln(1/x*(exp(x)+x))-exp(x)*x**3-x**4),x)

[Out]

(-64*x**6 - 256*x**5 - 256*x**4)/(x**2 - 2*x*log((x + exp(x))/x) + log((x + exp(x))/x)**2)

________________________________________________________________________________________