3.17.31
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [F] time = 5.42, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(512*x^5 + 768*x^6 + 256*x^7 + E^x*(-512*x^3 + 512*x^4 + 1152*x^5 + 384*x^6) + (-1024*x^4 - 1280*x^5 - 384
*x^6 + E^x*(-1024*x^3 - 1280*x^4 - 384*x^5))*Log[(E^x + x)/x])/(-(E^x*x^3) - x^4 + (3*E^x*x^2 + 3*x^3)*Log[(E^
x + x)/x] + (-3*E^x*x - 3*x^2)*Log[(E^x + x)/x]^2 + (E^x + x)*Log[(E^x + x)/x]^3),x]
[Out]
512*Defer[Int][x^3/(x - Log[(E^x + x)/x])^3, x] + 512*Defer[Int][x^4/(x - Log[(E^x + x)/x])^3, x] + 128*Defer[
Int][x^5/(x - Log[(E^x + x)/x])^3, x] - 512*Defer[Int][x^4/((E^x + x)*(x - Log[(E^x + x)/x])^3), x] + 384*Defe
r[Int][x^6/((E^x + x)*(x - Log[(E^x + x)/x])^3), x] + 128*Defer[Int][x^7/((E^x + x)*(x - Log[(E^x + x)/x])^3),
x] - 1024*Defer[Int][x^3/(x - Log[(E^x + x)/x])^2, x] - 1280*Defer[Int][x^4/(x - Log[(E^x + x)/x])^2, x] - 38
4*Defer[Int][x^5/(x - Log[(E^x + x)/x])^2, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.19, size = 26, normalized size = 0.90
Antiderivative was successfully verified.
[In]
Integrate[(512*x^5 + 768*x^6 + 256*x^7 + E^x*(-512*x^3 + 512*x^4 + 1152*x^5 + 384*x^6) + (-1024*x^4 - 1280*x^5
- 384*x^6 + E^x*(-1024*x^3 - 1280*x^4 - 384*x^5))*Log[(E^x + x)/x])/(-(E^x*x^3) - x^4 + (3*E^x*x^2 + 3*x^3)*L
og[(E^x + x)/x] + (-3*E^x*x - 3*x^2)*Log[(E^x + x)/x]^2 + (E^x + x)*Log[(E^x + x)/x]^3),x]
[Out]
(-64*x^4*(2 + x)^2)/(-x + Log[(E^x + x)/x])^2
________________________________________________________________________________________
fricas [A] time = 0.70, size = 45, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="fricas")
[Out]
-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*x*log((x + e^x)/x) + log((x + e^x)/x)^2)
________________________________________________________________________________________
giac [A] time = 0.80, size = 45, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="giac")
[Out]
-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*x*log((x + e^x)/x) + log((x + e^x)/x)^2)
________________________________________________________________________________________
maple [C] time = 0.48, size = 127, normalized size = 4.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*ln(1/x*(exp(x)+x))+(384*x^6+1152*x^5+512*
x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*ln(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*ln(1/x*(exp(
x)+x))^2+(3*exp(x)*x^2+3*x^3)*ln(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x,method=_RETURNVERBOSE)
[Out]
-256*(x^2+4*x+4)*x^4/(I*Pi*csgn(I/x)*csgn(I*(exp(x)+x))*csgn(I/x*(exp(x)+x))-I*Pi*csgn(I/x)*csgn(I/x*(exp(x)+x
))^2-I*Pi*csgn(I*(exp(x)+x))*csgn(I/x*(exp(x)+x))^2+I*Pi*csgn(I/x*(exp(x)+x))^3+2*x+2*ln(x)-2*ln(exp(x)+x))^2
________________________________________________________________________________________
maxima [A] time = 0.68, size = 49, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-384*x^5-1280*x^4-1024*x^3)*exp(x)-384*x^6-1280*x^5-1024*x^4)*log(1/x*(exp(x)+x))+(384*x^6+1152*x
^5+512*x^4-512*x^3)*exp(x)+256*x^7+768*x^6+512*x^5)/((exp(x)+x)*log(1/x*(exp(x)+x))^3+(-3*exp(x)*x-3*x^2)*log(
1/x*(exp(x)+x))^2+(3*exp(x)*x^2+3*x^3)*log(1/x*(exp(x)+x))-exp(x)*x^3-x^4),x, algorithm="maxima")
[Out]
-64*(x^6 + 4*x^5 + 4*x^4)/(x^2 - 2*(x + log(x))*log(x + e^x) + log(x + e^x)^2 + 2*x*log(x) + log(x)^2)
________________________________________________________________________________________
mupad [B] time = 1.64, size = 540, normalized size = 18.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(x)*(512*x^4 - 512*x^3 + 1152*x^5 + 384*x^6) + 512*x^5 + 768*x^6 + 256*x^7 - log((x + exp(x))/x)*(exp
(x)*(1024*x^3 + 1280*x^4 + 384*x^5) + 1024*x^4 + 1280*x^5 + 384*x^6))/(x^3*exp(x) + log((x + exp(x))/x)^2*(3*x
*exp(x) + 3*x^2) - log((x + exp(x))/x)*(3*x^2*exp(x) + 3*x^3) - log((x + exp(x))/x)^3*(x + exp(x)) + x^4),x)
[Out]
((64*x*(x + exp(x))*(24*x^5*exp(x) + 48*x^6*exp(x) + 43*x^7*exp(x) + 19*x^8*exp(x) + 3*x^9*exp(x) - 8*x^3*exp(
2*x) + 22*x^4*exp(2*x) + 47*x^5*exp(2*x) + 18*x^6*exp(2*x) + 16*x^7 + 30*x^8 + 12*x^9))/(exp(x) + x^2)^3 - (64
*x*log((x + exp(x))/x)*(x + exp(x))*(40*x^4*exp(x) + 68*x^5*exp(x) + 49*x^6*exp(x) + 19*x^7*exp(x) + 3*x^8*exp
(x) + 32*x^3*exp(2*x) + 50*x^4*exp(2*x) + 18*x^5*exp(2*x) + 24*x^6 + 40*x^7 + 15*x^8))/(exp(x) + x^2)^3)/(x -
log((x + exp(x))/x)) + ((64*x^4*(x + 2)*(3*x^2*exp(x) - 2*exp(x) + 3*x*exp(x) + 2*x^2 + 2*x^3))/(exp(x) + x^2)
- (64*x^4*log((x + exp(x))/x)*(x + exp(x))*(10*x + 3*x^2 + 8))/(exp(x) + x^2))/(log((x + exp(x))/x)^2 - 2*x*l
og((x + exp(x))/x) + x^2) - 2048*x^4 - 3200*x^5 - 1152*x^6 - (64*(144*x^6 - 28*x^7 - 188*x^8 + 13*x^9 + 41*x^1
0 - 3*x^11))/((exp(x) + x^2)*(2*x - x^2)) - (64*(56*x^10 - 32*x^9 + 4*x^11 - 46*x^12 + 13*x^13 + 8*x^14 - 3*x^
15))/((2*x - x^2)*(exp(3*x) + 3*x^4*exp(x) + 3*x^2*exp(2*x) + x^6)) + (64*(144*x^8 - 80*x^7 + 50*x^9 - 151*x^1
0 + 12*x^11 + 31*x^12 - 6*x^13))/((2*x - x^2)*(exp(2*x) + 2*x^2*exp(x) + x^4))
________________________________________________________________________________________
sympy [A] time = 0.27, size = 41, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-384*x**5-1280*x**4-1024*x**3)*exp(x)-384*x**6-1280*x**5-1024*x**4)*ln(1/x*(exp(x)+x))+(384*x**6+
1152*x**5+512*x**4-512*x**3)*exp(x)+256*x**7+768*x**6+512*x**5)/((exp(x)+x)*ln(1/x*(exp(x)+x))**3+(-3*exp(x)*x
-3*x**2)*ln(1/x*(exp(x)+x))**2+(3*exp(x)*x**2+3*x**3)*ln(1/x*(exp(x)+x))-exp(x)*x**3-x**4),x)
[Out]
(-64*x**6 - 256*x**5 - 256*x**4)/(x**2 - 2*x*log((x + exp(x))/x) + log((x + exp(x))/x)**2)
________________________________________________________________________________________