Optimal. Leaf size=29 \[ -3+e-\frac {64 x^4 (2+x)^2}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {512 x^5+768 x^6+256 x^7+e^x \left (-512 x^3+512 x^4+1152 x^5+384 x^6\right )+\left (-1024 x^4-1280 x^5-384 x^6+e^x \left (-1024 x^3-1280 x^4-384 x^5\right )\right ) \log \left (\frac {e^x+x}{x}\right )}{-e^x x^3-x^4+\left (3 e^x x^2+3 x^3\right ) \log \left (\frac {e^x+x}{x}\right )+\left (-3 e^x x-3 x^2\right ) \log ^2\left (\frac {e^x+x}{x}\right )+\left (e^x+x\right ) \log ^3\left (\frac {e^x+x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {128 x^3 (2+x) \left (-2 x^2 (1+x)-e^x \left (-2+3 x+3 x^2\right )+\left (e^x+x\right ) (4+3 x) \log \left (\frac {e^x+x}{x}\right )\right )}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx\\ &=128 \int \frac {x^3 (2+x) \left (-2 x^2 (1+x)-e^x \left (-2+3 x+3 x^2\right )+\left (e^x+x\right ) (4+3 x) \log \left (\frac {e^x+x}{x}\right )\right )}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx\\ &=128 \int \left (\frac {(-1+x) x^4 (2+x)^2}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}-\frac {x^3 (2+x) \left (-2+3 x+3 x^2-4 \log \left (\frac {e^x+x}{x}\right )-3 x \log \left (\frac {e^x+x}{x}\right )\right )}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}\right ) \, dx\\ &=128 \int \frac {(-1+x) x^4 (2+x)^2}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-128 \int \frac {x^3 (2+x) \left (-2+3 x+3 x^2-4 \log \left (\frac {e^x+x}{x}\right )-3 x \log \left (\frac {e^x+x}{x}\right )\right )}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx\\ &=128 \int \left (-\frac {4 x^4}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}+\frac {3 x^6}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}+\frac {x^7}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}\right ) \, dx-128 \int \left (-\frac {x^3 (2+x)^2}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}+\frac {x^3 \left (8+10 x+3 x^2\right )}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2}\right ) \, dx\\ &=128 \int \frac {x^3 (2+x)^2}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx+128 \int \frac {x^7}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-128 \int \frac {x^3 \left (8+10 x+3 x^2\right )}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2} \, dx+384 \int \frac {x^6}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-512 \int \frac {x^4}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx\\ &=128 \int \left (\frac {4 x^3}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}+\frac {4 x^4}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}+\frac {x^5}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3}\right ) \, dx-128 \int \left (\frac {8 x^3}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2}+\frac {10 x^4}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2}+\frac {3 x^5}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2}\right ) \, dx+128 \int \frac {x^7}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx+384 \int \frac {x^6}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-512 \int \frac {x^4}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx\\ &=128 \int \frac {x^5}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx+128 \int \frac {x^7}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx+384 \int \frac {x^6}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-384 \int \frac {x^5}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2} \, dx+512 \int \frac {x^3}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx+512 \int \frac {x^4}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-512 \int \frac {x^4}{\left (e^x+x\right ) \left (x-\log \left (\frac {e^x+x}{x}\right )\right )^3} \, dx-1024 \int \frac {x^3}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2} \, dx-1280 \int \frac {x^4}{\left (x-\log \left (\frac {e^x+x}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.19, size = 26, normalized size = 0.90 \begin {gather*} -\frac {64 x^4 (2+x)^2}{\left (-x+\log \left (\frac {e^x+x}{x}\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 45, normalized size = 1.55 \begin {gather*} -\frac {64 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )}}{x^{2} - 2 \, x \log \left (\frac {x + e^{x}}{x}\right ) + \log \left (\frac {x + e^{x}}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.80, size = 45, normalized size = 1.55 \begin {gather*} -\frac {64 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )}}{x^{2} - 2 \, x \log \left (\frac {x + e^{x}}{x}\right ) + \log \left (\frac {x + e^{x}}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.48, size = 127, normalized size = 4.38
method | result | size |
risch | \(-\frac {256 \left (x^{2}+4 x +4\right ) x^{4}}{\left (i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 x +2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{x}+x \right )\right )^{2}}\) | \(127\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 49, normalized size = 1.69 \begin {gather*} -\frac {64 \, {\left (x^{6} + 4 \, x^{5} + 4 \, x^{4}\right )}}{x^{2} - 2 \, {\left (x + \log \relax (x)\right )} \log \left (x + e^{x}\right ) + \log \left (x + e^{x}\right )^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 540, normalized size = 18.62 \begin {gather*} \frac {\frac {64\,x\,\left (x+{\mathrm {e}}^x\right )\,\left (24\,x^5\,{\mathrm {e}}^x+48\,x^6\,{\mathrm {e}}^x+43\,x^7\,{\mathrm {e}}^x+19\,x^8\,{\mathrm {e}}^x+3\,x^9\,{\mathrm {e}}^x-8\,x^3\,{\mathrm {e}}^{2\,x}+22\,x^4\,{\mathrm {e}}^{2\,x}+47\,x^5\,{\mathrm {e}}^{2\,x}+18\,x^6\,{\mathrm {e}}^{2\,x}+16\,x^7+30\,x^8+12\,x^9\right )}{{\left ({\mathrm {e}}^x+x^2\right )}^3}-\frac {64\,x\,\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )\,\left (x+{\mathrm {e}}^x\right )\,\left (40\,x^4\,{\mathrm {e}}^x+68\,x^5\,{\mathrm {e}}^x+49\,x^6\,{\mathrm {e}}^x+19\,x^7\,{\mathrm {e}}^x+3\,x^8\,{\mathrm {e}}^x+32\,x^3\,{\mathrm {e}}^{2\,x}+50\,x^4\,{\mathrm {e}}^{2\,x}+18\,x^5\,{\mathrm {e}}^{2\,x}+24\,x^6+40\,x^7+15\,x^8\right )}{{\left ({\mathrm {e}}^x+x^2\right )}^3}}{x-\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )}+\frac {\frac {64\,x^4\,\left (x+2\right )\,\left (3\,x^2\,{\mathrm {e}}^x-2\,{\mathrm {e}}^x+3\,x\,{\mathrm {e}}^x+2\,x^2+2\,x^3\right )}{{\mathrm {e}}^x+x^2}-\frac {64\,x^4\,\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )\,\left (x+{\mathrm {e}}^x\right )\,\left (3\,x^2+10\,x+8\right )}{{\mathrm {e}}^x+x^2}}{x^2-2\,x\,\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )+{\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )}^2}-2048\,x^4-3200\,x^5-1152\,x^6-\frac {64\,\left (-3\,x^{11}+41\,x^{10}+13\,x^9-188\,x^8-28\,x^7+144\,x^6\right )}{\left ({\mathrm {e}}^x+x^2\right )\,\left (2\,x-x^2\right )}-\frac {64\,\left (-3\,x^{15}+8\,x^{14}+13\,x^{13}-46\,x^{12}+4\,x^{11}+56\,x^{10}-32\,x^9\right )}{\left (2\,x-x^2\right )\,\left ({\mathrm {e}}^{3\,x}+3\,x^4\,{\mathrm {e}}^x+3\,x^2\,{\mathrm {e}}^{2\,x}+x^6\right )}+\frac {64\,\left (-6\,x^{13}+31\,x^{12}+12\,x^{11}-151\,x^{10}+50\,x^9+144\,x^8-80\,x^7\right )}{\left (2\,x-x^2\right )\,\left ({\mathrm {e}}^{2\,x}+2\,x^2\,{\mathrm {e}}^x+x^4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 41, normalized size = 1.41 \begin {gather*} \frac {- 64 x^{6} - 256 x^{5} - 256 x^{4}}{x^{2} - 2 x \log {\left (\frac {x + e^{x}}{x} \right )} + \log {\left (\frac {x + e^{x}}{x} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________