3.17.36 e2(818x10x2x3)+e2(8+4x)log(4+2xx)32+32x+10x2+x3dx

Optimal. Leaf size=27 e2x(xlog(34+xx))4x

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 50, normalized size of antiderivative = 1.85, number of steps used = 16, number of rules used = 9, integrand size = 55, number of rulesintegrand size = 0.164, Rules used = {6741, 12, 6742, 44, 77, 88, 2463, 514, 72} e2x16e2x+44e2log(4x+2)x+4e2log(x)+e2log(x+2)

Antiderivative was successfully verified.

[In]

Int[(E^2*(-8 - 18*x - 10*x^2 - x^3) + E^2*(8 + 4*x)*Log[(4 + 2*x)/x])/(32 + 32*x + 10*x^2 + x^3),x]

[Out]

-(E^2*x) - (16*E^2)/(4 + x) - (4*E^2*Log[2 + 4/x])/(4 + x) - E^2*Log[x] + E^2*Log[2 + x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 2463

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> Simp[((
f + g*x)^(r + 1)*(a + b*Log[c*(d + e*x^n)^p]))/(g*(r + 1)), x] - Dist[(b*e*n*p)/(g*(r + 1)), Int[(x^(n - 1)*(f
 + g*x)^(r + 1))/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, r}, x] && (IGtQ[r, 0] || RationalQ[n
]) && NeQ[r, -1]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=e2(818x10x2x3+8log(2+4x)+4xlog(2+4x))32+32x+10x2+x3dx=e2818x10x2x3+8log(2+4x)+4xlog(2+4x)32+32x+10x2+x3dx=e2(8(2+x)(4+x)218x(2+x)(4+x)210x2(2+x)(4+x)2x3(2+x)(4+x)2+4log(2+4x)(4+x)2)dx=(e2x3(2+x)(4+x)2dx)+(4e2)log(2+4x)(4+x)2dx(8e2)1(2+x)(4+x)2dx(10e2)x2(2+x)(4+x)2dx(18e2)x(2+x)(4+x)2dx=4e2log(2+4x)4+xe2(122+x+32(4+x)284+x)dx(8e2)(14(2+x)12(4+x)214(4+x))dx(10e2)(12+x8(4+x)2)dx(16e2)1(2+4x)x2(4+x)dx(18e2)(12(2+x)+2(4+x)2+12(4+x))dx=e2x16e24+x4e2log(2+4x)4+xe2log(2+x)+e2log(4+x)(16e2)1x(4+x)(4+2x)dx=e2x16e24+x4e2log(2+4x)4+xe2log(2+x)+e2log(4+x)(16e2)(116x18(2+x)+116(4+x))dx=e2x16e24+x4e2log(2+4x)4+xe2log(x)+e2log(2+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 32, normalized size = 1.19 e2(x+4(4+log(2+4x))4+x+log(x)log(2+x))

Antiderivative was successfully verified.

[In]

Integrate[(E^2*(-8 - 18*x - 10*x^2 - x^3) + E^2*(8 + 4*x)*Log[(4 + 2*x)/x])/(32 + 32*x + 10*x^2 + x^3),x]

[Out]

-(E^2*(x + (4*(4 + Log[2 + 4/x]))/(4 + x) + Log[x] - Log[2 + x]))

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 32, normalized size = 1.19 xe2log(2(x+2)x)(x2+4x+16)e2x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="frica
s")

[Out]

(x*e^2*log(2*(x + 2)/x) - (x^2 + 4*x + 16)*e^2)/(x + 4)

________________________________________________________________________________________

giac [B]  time = 0.41, size = 59, normalized size = 2.19 (x+2)e2log(2(x+2)x)xe2log(2(x+2)x)2e22(x+2)2x23(x+2)x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="giac"
)

[Out]

((x + 2)*e^2*log(2*(x + 2)/x)/x - e^2*log(2*(x + 2)/x) - 2*e^2)/(2*(x + 2)^2/x^2 - 3*(x + 2)/x + 1)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 29, normalized size = 1.07




method result size



norman e2xln(2x+4x)x2e24+x 29
derivativedivides e2ln(2+4x)(2+4x)4x+1e2x+4e24x+1e2ln(2+4x) 59
default e2ln(2+4x)(2+4x)4x+1e2x+4e24x+1e2ln(2+4x) 59
risch 4e2ln(2x+4x)4+xe2(ln(x)xln(x2)x+x2+4ln(x)4ln(x2)+4x+16)4+x 67



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x+8)*exp(2)*ln((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x,method=_RETURNVERBOSE)

[Out]

(exp(2)*x*ln((2*x+4)/x)-x^2*exp(2))/(4+x)

________________________________________________________________________________________

maxima [B]  time = 0.68, size = 80, normalized size = 2.96 2(2x+4log(x+4)+log(x+2))e22e2log(x+4)x2e2+xe2log(x)+4xe2+4(log(2)+3)e2(3xe2+8e2)log(x+2)x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="maxim
a")

[Out]

-2*(2/(x + 4) - log(x + 4) + log(x + 2))*e^2 - 2*e^2*log(x + 4) - (x^2*e^2 + x*e^2*log(x) + 4*x*e^2 + 4*(log(2
) + 3)*e^2 - (3*x*e^2 + 8*e^2)*log(x + 2))/(x + 4)

________________________________________________________________________________________

mupad [B]  time = 1.31, size = 23, normalized size = 0.85 xe2(xln(2(x+2)x))x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2)*(18*x + 10*x^2 + x^3 + 8) - exp(2)*log((2*x + 4)/x)*(4*x + 8))/(32*x + 10*x^2 + x^3 + 32),x)

[Out]

-(x*exp(2)*(x - log((2*(x + 2))/x)))/(x + 4)

________________________________________________________________________________________

sympy [B]  time = 0.33, size = 44, normalized size = 1.63 xe2e2log(x)+e2log(x+2)4e2log(2x+4x)x+416e2x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+8)*exp(2)*ln((2*x+4)/x)+(-x**3-10*x**2-18*x-8)*exp(2))/(x**3+10*x**2+32*x+32),x)

[Out]

-x*exp(2) - exp(2)*log(x) + exp(2)*log(x + 2) - 4*exp(2)*log((2*x + 4)/x)/(x + 4) - 16*exp(2)/(x + 4)

________________________________________________________________________________________