3.17.36
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 50, normalized size of antiderivative = 1.85,
number of steps used = 16, number of rules used = 9, integrand size = 55, = 0.164, Rules used
= {6741, 12, 6742, 44, 77, 88, 2463, 514, 72}
Antiderivative was successfully verified.
[In]
Int[(E^2*(-8 - 18*x - 10*x^2 - x^3) + E^2*(8 + 4*x)*Log[(4 + 2*x)/x])/(32 + 32*x + 10*x^2 + x^3),x]
[Out]
-(E^2*x) - (16*E^2)/(4 + x) - (4*E^2*Log[2 + 4/x])/(4 + x) - E^2*Log[x] + E^2*Log[2 + x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 72
Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]
Rule 77
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
Rule 88
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))
Rule 514
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
| !IntegerQ[p])
Rule 2463
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> Simp[((
f + g*x)^(r + 1)*(a + b*Log[c*(d + e*x^n)^p]))/(g*(r + 1)), x] - Dist[(b*e*n*p)/(g*(r + 1)), Int[(x^(n - 1)*(f
+ g*x)^(r + 1))/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, r}, x] && (IGtQ[r, 0] || RationalQ[n
]) && NeQ[r, -1]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 32, normalized size = 1.19
Antiderivative was successfully verified.
[In]
Integrate[(E^2*(-8 - 18*x - 10*x^2 - x^3) + E^2*(8 + 4*x)*Log[(4 + 2*x)/x])/(32 + 32*x + 10*x^2 + x^3),x]
[Out]
-(E^2*(x + (4*(4 + Log[2 + 4/x]))/(4 + x) + Log[x] - Log[2 + x]))
________________________________________________________________________________________
fricas [A] time = 0.76, size = 32, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="frica
s")
[Out]
(x*e^2*log(2*(x + 2)/x) - (x^2 + 4*x + 16)*e^2)/(x + 4)
________________________________________________________________________________________
giac [B] time = 0.41, size = 59, normalized size = 2.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="giac"
)
[Out]
((x + 2)*e^2*log(2*(x + 2)/x)/x - e^2*log(2*(x + 2)/x) - 2*e^2)/(2*(x + 2)^2/x^2 - 3*(x + 2)/x + 1)
________________________________________________________________________________________
maple [A] time = 0.11, size = 29, normalized size = 1.07
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
derivativedivides |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x+8)*exp(2)*ln((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x,method=_RETURNVERBOSE)
[Out]
(exp(2)*x*ln((2*x+4)/x)-x^2*exp(2))/(4+x)
________________________________________________________________________________________
maxima [B] time = 0.68, size = 80, normalized size = 2.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+8)*exp(2)*log((2*x+4)/x)+(-x^3-10*x^2-18*x-8)*exp(2))/(x^3+10*x^2+32*x+32),x, algorithm="maxim
a")
[Out]
-2*(2/(x + 4) - log(x + 4) + log(x + 2))*e^2 - 2*e^2*log(x + 4) - (x^2*e^2 + x*e^2*log(x) + 4*x*e^2 + 4*(log(2
) + 3)*e^2 - (3*x*e^2 + 8*e^2)*log(x + 2))/(x + 4)
________________________________________________________________________________________
mupad [B] time = 1.31, size = 23, normalized size = 0.85
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2)*(18*x + 10*x^2 + x^3 + 8) - exp(2)*log((2*x + 4)/x)*(4*x + 8))/(32*x + 10*x^2 + x^3 + 32),x)
[Out]
-(x*exp(2)*(x - log((2*(x + 2))/x)))/(x + 4)
________________________________________________________________________________________
sympy [B] time = 0.33, size = 44, normalized size = 1.63
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+8)*exp(2)*ln((2*x+4)/x)+(-x**3-10*x**2-18*x-8)*exp(2))/(x**3+10*x**2+32*x+32),x)
[Out]
-x*exp(2) - exp(2)*log(x) + exp(2)*log(x + 2) - 4*exp(2)*log((2*x + 4)/x)/(x + 4) - 16*exp(2)/(x + 4)
________________________________________________________________________________________