3.17.35
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^E^x*(5 - 6*x + x^2)*Log[16] + (-5 + 6*x - x^2)*Log[25 - 10*x + x^2] + (2*x + E^(E^x + x)*(5*x - x^2)*Lo
g[16])*Log[x/E^x]*Log[Log[x/E^x]])/((-5*x + x^2)*Log[x/E^x]),x]
[Out]
Log[16]*Defer[Int][E^E^x/Log[x/E^x], x] - Log[16]*Defer[Int][E^E^x/(x*Log[x/E^x]), x] - Defer[Int][Log[(-5 + x
)^2]/Log[x/E^x], x] + Defer[Int][Log[(-5 + x)^2]/(x*Log[x/E^x]), x] - Log[16]*Defer[Int][E^(E^x + x)*Log[Log[x
/E^x]], x] + 2*Defer[Int][Log[Log[x/E^x]]/(-5 + x), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^E^x*(5 - 6*x + x^2)*Log[16] + (-5 + 6*x - x^2)*Log[25 - 10*x + x^2] + (2*x + E^(E^x + x)*(5*x - x
^2)*Log[16])*Log[x/E^x]*Log[Log[x/E^x]])/((-5*x + x^2)*Log[x/E^x]),x]
[Out]
(-(E^E^x*Log[16]) + Log[(-5 + x)^2])*Log[Log[x/E^x]]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 37, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="fricas")
[Out]
-(4*e^(x + e^x)*log(2) - e^x*log(x^2 - 10*x + 25))*e^(-x)*log(log(x*e^(-x)))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="giac")
[Out]
integrate((4*(x^2 - 6*x + 5)*e^(e^x)*log(2) - 2*(2*(x^2 - 5*x)*e^(x + e^x)*log(2) - x)*log(x*e^(-x))*log(log(x
*e^(-x))) - (x^2 - 6*x + 5)*log(x^2 - 10*x + 25))/((x^2 - 5*x)*log(x*e^(-x))), x)
________________________________________________________________________________________
maple [C] time = 0.42, size = 220, normalized size = 8.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*(-x^2+5*x)*ln(2)*exp(x)*exp(exp(x))+2*x)*ln(x/exp(x))*ln(ln(x/exp(x)))+4*(x^2-6*x+5)*ln(2)*exp(exp(x))
+(-x^2+6*x-5)*ln(x^2-10*x+25))/(x^2-5*x)/ln(x/exp(x)),x,method=_RETURNVERBOSE)
[Out]
(-4*ln(2)*exp(exp(x))+2*ln(x-5))*ln(ln(x)-ln(exp(x))-1/2*I*Pi*csgn(I*x*exp(-x))*(-csgn(I*x*exp(-x))+csgn(I*x))
*(-csgn(I*x*exp(-x))+csgn(I*exp(-x))))-1/2*I*Pi*csgn(I*(x-5)^2)*(csgn(I*(x-5))^2-2*csgn(I*(x-5)^2)*csgn(I*(x-5
))+csgn(I*(x-5)^2)^2)*ln(ln(exp(x))+1/2*I*(Pi*csgn(I*x)*csgn(I*exp(-x))*csgn(I*x*exp(-x))-Pi*csgn(I*x)*csgn(I*
x*exp(-x))^2-Pi*csgn(I*exp(-x))*csgn(I*x*exp(-x))^2+Pi*csgn(I*x*exp(-x))^3+2*I*ln(x)))
________________________________________________________________________________________
maxima [A] time = 0.70, size = 23, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="maxima")
[Out]
-2*(2*e^(e^x)*log(2) - log(x - 5))*log(-x + log(x))
________________________________________________________________________________________
mupad [B] time = 1.71, size = 32, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(4*exp(exp(x))*log(2)*(x^2 - 6*x + 5) - log(x^2 - 10*x + 25)*(x^2 - 6*x + 5) + log(x*exp(-x))*log(log(x*e
xp(-x)))*(2*x + 4*exp(exp(x))*exp(x)*log(2)*(5*x - x^2)))/(log(x*exp(-x))*(5*x - x^2)),x)
[Out]
log(x^2 - 10*x + 25)*log(log(x) - x) - 4*exp(exp(x))*log(2)*log(log(x) - x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*(-x**2+5*x)*ln(2)*exp(x)*exp(exp(x))+2*x)*ln(x/exp(x))*ln(ln(x/exp(x)))+4*(x**2-6*x+5)*ln(2)*exp
(exp(x))+(-x**2+6*x-5)*ln(x**2-10*x+25))/(x**2-5*x)/ln(x/exp(x)),x)
[Out]
Timed out
________________________________________________________________________________________