3.17.35 eex(56x+x2)log(16)+(5+6xx2)log(2510x+x2)+(2x+eex+x(5xx2)log(16))log(exx)log(log(exx))(5x+x2)log(exx)dx

Optimal. Leaf size=26 (eexlog(16)+log((5+x)2))log(log(exx))

________________________________________________________________________________________

Rubi [F]  time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} eex(56x+x2)log(16)+(5+6xx2)log(2510x+x2)+(2x+eex+x(5xx2)log(16))log(exx)log(log(exx))(5x+x2)log(exx)dx

Verification is not applicable to the result.

[In]

Int[(E^E^x*(5 - 6*x + x^2)*Log[16] + (-5 + 6*x - x^2)*Log[25 - 10*x + x^2] + (2*x + E^(E^x + x)*(5*x - x^2)*Lo
g[16])*Log[x/E^x]*Log[Log[x/E^x]])/((-5*x + x^2)*Log[x/E^x]),x]

[Out]

Log[16]*Defer[Int][E^E^x/Log[x/E^x], x] - Log[16]*Defer[Int][E^E^x/(x*Log[x/E^x]), x] - Defer[Int][Log[(-5 + x
)^2]/Log[x/E^x], x] + Defer[Int][Log[(-5 + x)^2]/(x*Log[x/E^x]), x] - Log[16]*Defer[Int][E^(E^x + x)*Log[Log[x
/E^x]], x] + 2*Defer[Int][Log[Log[x/E^x]]/(-5 + x), x]

Rubi steps

integral=eex(56x+x2)log(16)+(5+6xx2)log(2510x+x2)+(2x+eex+x(5xx2)log(16))log(exx)log(log(exx))(5+x)xlog(exx)dx=(eex+xlog(16)log(log(exx))+5eexlog(16)6eexxlog(16)+eexx2log(16)5log((5+x)2)+6xlog((5+x)2)x2log((5+x)2)+2xlog(exx)log(log(exx))(5+x)xlog(exx))dx=(log(16)eex+xlog(log(exx))dx)+5eexlog(16)6eexxlog(16)+eexx2log(16)5log((5+x)2)+6xlog((5+x)2)x2log((5+x)2)+2xlog(exx)log(log(exx))(5+x)xlog(exx)dx=(log(16)eex+xlog(log(exx))dx)+eex(56x+x2)log(16)+(56x+x2)log((5+x)2)2xlog(exx)log(log(exx))(5x)xlog(exx)dx=(log(16)eex+xlog(log(exx))dx)+(eex(1+x)log(16)xlog(exx)+5log((5+x)2)+6xlog((5+x)2)x2log((5+x)2)+2xlog(exx)log(log(exx))(5+x)xlog(exx))dx=log(16)eex(1+x)xlog(exx)dxlog(16)eex+xlog(log(exx))dx+5log((5+x)2)+6xlog((5+x)2)x2log((5+x)2)+2xlog(exx)log(log(exx))(5+x)xlog(exx)dx=log(16)(eexlog(exx)eexxlog(exx))dxlog(16)eex+xlog(log(exx))dx+(56x+x2)log((5+x)2)xlog(exx)2log(log(exx))5xdx=log(16)eexlog(exx)dxlog(16)eexxlog(exx)dxlog(16)eex+xlog(log(exx))dx+((1+x)log((5+x)2)xlog(exx)+2log(log(exx))5+x)dx=2log(log(exx))5+xdx+log(16)eexlog(exx)dxlog(16)eexxlog(exx)dxlog(16)eex+xlog(log(exx))dx(1+x)log((5+x)2)xlog(exx)dx=2log(log(exx))5+xdx+log(16)eexlog(exx)dxlog(16)eexxlog(exx)dxlog(16)eex+xlog(log(exx))dx(log((5+x)2)log(exx)log((5+x)2)xlog(exx))dx=2log(log(exx))5+xdx+log(16)eexlog(exx)dxlog(16)eexxlog(exx)dxlog(16)eex+xlog(log(exx))dxlog((5+x)2)log(exx)dx+log((5+x)2)xlog(exx)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 26, normalized size = 1.00 (eexlog(16)+log((5+x)2))log(log(exx))

Antiderivative was successfully verified.

[In]

Integrate[(E^E^x*(5 - 6*x + x^2)*Log[16] + (-5 + 6*x - x^2)*Log[25 - 10*x + x^2] + (2*x + E^(E^x + x)*(5*x - x
^2)*Log[16])*Log[x/E^x]*Log[Log[x/E^x]])/((-5*x + x^2)*Log[x/E^x]),x]

[Out]

(-(E^E^x*Log[16]) + Log[(-5 + x)^2])*Log[Log[x/E^x]]

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 37, normalized size = 1.42 (4e(x+ex)log(2)exlog(x210x+25))e(x)log(log(xe(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="fricas")

[Out]

-(4*e^(x + e^x)*log(2) - e^x*log(x^2 - 10*x + 25))*e^(-x)*log(log(x*e^(-x)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 4(x26x+5)e(ex)log(2)2(2(x25x)e(x+ex)log(2)x)log(xe(x))log(log(xe(x)))(x26x+5)log(x210x+25)(x25x)log(xe(x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="giac")

[Out]

integrate((4*(x^2 - 6*x + 5)*e^(e^x)*log(2) - 2*(2*(x^2 - 5*x)*e^(x + e^x)*log(2) - x)*log(x*e^(-x))*log(log(x
*e^(-x))) - (x^2 - 6*x + 5)*log(x^2 - 10*x + 25))/((x^2 - 5*x)*log(x*e^(-x))), x)

________________________________________________________________________________________

maple [C]  time = 0.42, size = 220, normalized size = 8.46




method result size



risch (4ln(2)eex+2ln(x5))ln(ln(x)ln(ex)iπcsgn(ixex)(csgn(ixex)+csgn(ix))(csgn(ixex)+csgn(iex))2)iπcsgn(i(x5)2)(csgn(i(x5))22csgn(i(x5)2)csgn(i(x5))+csgn(i(x5)2)2)ln(ln(ex)+i(πcsgn(ix)csgn(iex)csgn(ixex)πcsgn(ix)csgn(ixex)2πcsgn(iex)csgn(ixex)2+πcsgn(ixex)3+2iln(x))2)2 220



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*(-x^2+5*x)*ln(2)*exp(x)*exp(exp(x))+2*x)*ln(x/exp(x))*ln(ln(x/exp(x)))+4*(x^2-6*x+5)*ln(2)*exp(exp(x))
+(-x^2+6*x-5)*ln(x^2-10*x+25))/(x^2-5*x)/ln(x/exp(x)),x,method=_RETURNVERBOSE)

[Out]

(-4*ln(2)*exp(exp(x))+2*ln(x-5))*ln(ln(x)-ln(exp(x))-1/2*I*Pi*csgn(I*x*exp(-x))*(-csgn(I*x*exp(-x))+csgn(I*x))
*(-csgn(I*x*exp(-x))+csgn(I*exp(-x))))-1/2*I*Pi*csgn(I*(x-5)^2)*(csgn(I*(x-5))^2-2*csgn(I*(x-5)^2)*csgn(I*(x-5
))+csgn(I*(x-5)^2)^2)*ln(ln(exp(x))+1/2*I*(Pi*csgn(I*x)*csgn(I*exp(-x))*csgn(I*x*exp(-x))-Pi*csgn(I*x)*csgn(I*
x*exp(-x))^2-Pi*csgn(I*exp(-x))*csgn(I*x*exp(-x))^2+Pi*csgn(I*x*exp(-x))^3+2*I*ln(x)))

________________________________________________________________________________________

maxima [A]  time = 0.70, size = 23, normalized size = 0.88 2(2e(ex)log(2)log(x5))log(x+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*(-x^2+5*x)*log(2)*exp(x)*exp(exp(x))+2*x)*log(x/exp(x))*log(log(x/exp(x)))+4*(x^2-6*x+5)*log(2)*
exp(exp(x))+(-x^2+6*x-5)*log(x^2-10*x+25))/(x^2-5*x)/log(x/exp(x)),x, algorithm="maxima")

[Out]

-2*(2*e^(e^x)*log(2) - log(x - 5))*log(-x + log(x))

________________________________________________________________________________________

mupad [B]  time = 1.71, size = 32, normalized size = 1.23 ln(x210x+25)ln(ln(x)x)4eexln(2)ln(ln(x)x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*exp(exp(x))*log(2)*(x^2 - 6*x + 5) - log(x^2 - 10*x + 25)*(x^2 - 6*x + 5) + log(x*exp(-x))*log(log(x*e
xp(-x)))*(2*x + 4*exp(exp(x))*exp(x)*log(2)*(5*x - x^2)))/(log(x*exp(-x))*(5*x - x^2)),x)

[Out]

log(x^2 - 10*x + 25)*log(log(x) - x) - 4*exp(exp(x))*log(2)*log(log(x) - x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*(-x**2+5*x)*ln(2)*exp(x)*exp(exp(x))+2*x)*ln(x/exp(x))*ln(ln(x/exp(x)))+4*(x**2-6*x+5)*ln(2)*exp
(exp(x))+(-x**2+6*x-5)*ln(x**2-10*x+25))/(x**2-5*x)/ln(x/exp(x)),x)

[Out]

Timed out

________________________________________________________________________________________