3.17.38 12x22e2x2(x+2x3+2e2x3)log(1+2x2+2e2x22x+2e2x)dx

Optimal. Leaf size=24 log(6log(12(1e2)x+x))

________________________________________________________________________________________

Rubi [F]  time = 0.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 12x22e2x2(x+2x3+2e2x3)log(1+2x2+2e2x22x+2e2x)dx

Verification is not applicable to the result.

[In]

Int[(-1 - 2*x^2 - 2*E^2*x^2)/((-x + 2*x^3 + 2*E^2*x^3)*Log[(-1 + 2*x^2 + 2*E^2*x^2)/(2*x + 2*E^2*x)]),x]

[Out]

Defer[Int][1/(x*Log[x - (2*x + 2*E^2*x)^(-1)]), x] + Sqrt[2*(1 + E^2)]*Defer[Int][1/((1 - Sqrt[2*(1 + E^2)]*x)
*Log[x - (2*x + 2*E^2*x)^(-1)]), x] - Sqrt[2*(1 + E^2)]*Defer[Int][1/((1 + Sqrt[2*(1 + E^2)]*x)*Log[x - (2*x +
 2*E^2*x)^(-1)]), x]

Rubi steps

integral=1+(22e2)x2(x+2x3+2e2x3)log(1+2x2+2e2x22x+2e2x)dx=1+(22e2)x2(x+(2+2e2)x3)log(1+2x2+2e2x22x+2e2x)dx=1+(22e2)x2x(1+(2+2e2)x2)log(1+2x2+2e2x22x+2e2x)dx=(1xlog(x12x+2e2x)+4(1+e2)x(12(1+e2)x2)log(x12x+2e2x))dx=(4(1+e2))x(12(1+e2)x2)log(x12x+2e2x)dx+1xlog(x12x+2e2x)dx=(4(1+e2))(122(1+e2)(12(1+e2)x)log(x12x+2e2x)122(1+e2)(1+2(1+e2)x)log(x12x+2e2x))dx+1xlog(x12x+2e2x)dx=2(1+e2)1(12(1+e2)x)log(x12x+2e2x)dx2(1+e2)1(1+2(1+e2)x)log(x12x+2e2x)dx+1xlog(x12x+2e2x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 20, normalized size = 0.83 log(log(x12x+2e2x))

Antiderivative was successfully verified.

[In]

Integrate[(-1 - 2*x^2 - 2*E^2*x^2)/((-x + 2*x^3 + 2*E^2*x^3)*Log[(-1 + 2*x^2 + 2*E^2*x^2)/(2*x + 2*E^2*x)]),x]

[Out]

-Log[Log[x - (2*x + 2*E^2*x)^(-1)]]

________________________________________________________________________________________

fricas [A]  time = 0.79, size = 28, normalized size = 1.17 log(log(2x2e2+2x212(xe2+x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2*exp(2)-2*x^2-1)/(2*x^3*exp(2)+2*x^3-x)/log((2*x^2*exp(2)+2*x^2-1)/(2*exp(2)*x+2*x)),x, algor
ithm="fricas")

[Out]

-log(log(1/2*(2*x^2*e^2 + 2*x^2 - 1)/(x*e^2 + x)))

________________________________________________________________________________________

giac [A]  time = 0.33, size = 28, normalized size = 1.17 log(log(2x2e2+2x212(xe2+x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2*exp(2)-2*x^2-1)/(2*x^3*exp(2)+2*x^3-x)/log((2*x^2*exp(2)+2*x^2-1)/(2*exp(2)*x+2*x)),x, algor
ithm="giac")

[Out]

-log(log(1/2*(2*x^2*e^2 + 2*x^2 - 1)/(x*e^2 + x)))

________________________________________________________________________________________

maple [A]  time = 0.31, size = 31, normalized size = 1.29




method result size



norman ln(ln(2x2e2+2x212e2x+2x)) 31
risch ln(ln(2x2e2+2x212e2x+2x)) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x^2*exp(2)-2*x^2-1)/(2*x^3*exp(2)+2*x^3-x)/ln((2*x^2*exp(2)+2*x^2-1)/(2*exp(2)*x+2*x)),x,method=_RETUR
NVERBOSE)

[Out]

-ln(ln((2*x^2*exp(2)+2*x^2-1)/(2*exp(2)*x+2*x)))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 31, normalized size = 1.29 log(log(2)+log(2x2(e2+1)1)log(x)log(e2+1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2*exp(2)-2*x^2-1)/(2*x^3*exp(2)+2*x^3-x)/log((2*x^2*exp(2)+2*x^2-1)/(2*exp(2)*x+2*x)),x, algor
ithm="maxima")

[Out]

-log(-log(2) + log(2*x^2*(e^2 + 1) - 1) - log(x) - log(e^2 + 1))

________________________________________________________________________________________

mupad [B]  time = 5.52, size = 30, normalized size = 1.25 ln(ln(2x2e2+2x212x+2xe2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x^2*exp(2) + 2*x^2 + 1)/(log((2*x^2*exp(2) + 2*x^2 - 1)/(2*x + 2*x*exp(2)))*(2*x^3*exp(2) - x + 2*x^3)
),x)

[Out]

-log(log((2*x^2*exp(2) + 2*x^2 - 1)/(2*x + 2*x*exp(2))))

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 29, normalized size = 1.21 log(log(2x2+2x2e212x+2xe2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x**2*exp(2)-2*x**2-1)/(2*x**3*exp(2)+2*x**3-x)/ln((2*x**2*exp(2)+2*x**2-1)/(2*exp(2)*x+2*x)),x)

[Out]

-log(log((2*x**2 + 2*x**2*exp(2) - 1)/(2*x + 2*x*exp(2))))

________________________________________________________________________________________