3.17.39 e3ex1+xx(1+x+3ex1+xxx2x3)1+2x+x2dx

Optimal. Leaf size=28 3+e3+3(1+ex2x+x2)xx

________________________________________________________________________________________

Rubi [F]  time = 3.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e3ex1+xx(1+x+3ex1+xxx2x3)1+2x+x2dx

Verification is not applicable to the result.

[In]

Int[(E^(3*E^(x/(1 + x)) - x)*(1 + x + 3*E^(x/(1 + x))*x - x^2 - x^3))/(1 + 2*x + x^2),x]

[Out]

Defer[Int][E^(3*E^(x/(1 + x)) - x), x] - Defer[Int][E^(3*E^(x/(1 + x)) - x)*x, x] - 3*Defer[Int][E^(3*E^(x/(1
+ x)) - x + x/(1 + x))/(1 + x)^2, x] + 3*Defer[Int][E^(3*E^(x/(1 + x)) - x + x/(1 + x))/(1 + x), x]

Rubi steps

integral=e3ex1+xx(1+x+3ex1+xxx2x3)(1+x)2dx=(e3ex1+xx(1+x)2+e3ex1+xxx(1+x)2+3e3ex1+xx+x1+xx(1+x)2e3ex1+xxx2(1+x)2e3ex1+xxx3(1+x)2)dx=3e3ex1+xx+x1+xx(1+x)2dx+e3ex1+xx(1+x)2dx+e3ex1+xxx(1+x)2dxe3ex1+xxx2(1+x)2dxe3ex1+xxx3(1+x)2dx=3(e3ex1+xx+x1+x(1+x)2+e3ex1+xx+x1+x1+x)dx+e3ex1+xx(1+x)2dx(e3ex1+xx+e3ex1+xx(1+x)22e3ex1+xx1+x)dx+(e3ex1+xx(1+x)2+e3ex1+xx1+x)dx(2e3ex1+xx+e3ex1+xxxe3ex1+xx(1+x)2+3e3ex1+xx1+x)dx=2e3ex1+xxdx+2e3ex1+xx1+xdx3e3ex1+xx+x1+x(1+x)2dx3e3ex1+xx1+xdx+3e3ex1+xx+x1+x1+xdxe3ex1+xxdxe3ex1+xxxdx+e3ex1+xx1+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.64, size = 21, normalized size = 0.75 e3e111+xxx

Antiderivative was successfully verified.

[In]

Integrate[(E^(3*E^(x/(1 + x)) - x)*(1 + x + 3*E^(x/(1 + x))*x - x^2 - x^3))/(1 + 2*x + x^2),x]

[Out]

E^(3*E^(1 - (1 + x)^(-1)) - x)*x

________________________________________________________________________________________

fricas [A]  time = 0.79, size = 17, normalized size = 0.61 xe(x+3e(xx+1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x*exp(x/(x+1))-x^3-x^2+x+1)/(x^2+2*x+1)/exp(-3*exp(x/(x+1))+x),x, algorithm="fricas")

[Out]

x*e^(-x + 3*e^(x/(x + 1)))

________________________________________________________________________________________

giac [A]  time = 0.21, size = 44, normalized size = 1.57 xe(x23xe(xx+1)3e(xx+1)x+1xx+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x*exp(x/(x+1))-x^3-x^2+x+1)/(x^2+2*x+1)/exp(-3*exp(x/(x+1))+x),x, algorithm="giac")

[Out]

x*e^(-(x^2 - 3*x*e^(x/(x + 1)) - 3*e^(x/(x + 1)))/(x + 1) - x/(x + 1))

________________________________________________________________________________________

maple [A]  time = 0.32, size = 18, normalized size = 0.64




method result size



risch xe3exx+1x 18
norman (x2+x)e3exx+1xx+1 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x*exp(x/(x+1))-x^3-x^2+x+1)/(x^2+2*x+1)/exp(-3*exp(x/(x+1))+x),x,method=_RETURNVERBOSE)

[Out]

x*exp(3*exp(x/(x+1))-x)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 19, normalized size = 0.68 xe(x+3e(1x+1+1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x*exp(x/(x+1))-x^3-x^2+x+1)/(x^2+2*x+1)/exp(-3*exp(x/(x+1))+x),x, algorithm="maxima")

[Out]

x*e^(-x + 3*e^(-1/(x + 1) + 1))

________________________________________________________________________________________

mupad [B]  time = 1.26, size = 17, normalized size = 0.61 xe3exx+1ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(3*exp(x/(x + 1)) - x)*(x + 3*x*exp(x/(x + 1)) - x^2 - x^3 + 1))/(2*x + x^2 + 1),x)

[Out]

x*exp(3*exp(x/(x + 1)))*exp(-x)

________________________________________________________________________________________

sympy [A]  time = 6.85, size = 12, normalized size = 0.43 xex+3exx+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x*exp(x/(x+1))-x**3-x**2+x+1)/(x**2+2*x+1)/exp(-3*exp(x/(x+1))+x),x)

[Out]

x*exp(-x + 3*exp(x/(x + 1)))

________________________________________________________________________________________