Optimal. Leaf size=33 \[ 2 x-\frac {1}{4} e^{-\frac {x \left (x+x^2\right )}{2 e}} \left (-2 x+\frac {\log (3)}{3}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{24} e^{-1-\frac {x^2+x^3}{2 e}} \left (12 e+48 e^{1+\frac {x^2+x^3}{2 e}}-12 x^2-18 x^3+\left (2 x+3 x^2\right ) \log (3)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{24} \int e^{-1-\frac {x^2+x^3}{2 e}} \left (12 e+48 e^{1+\frac {x^2+x^3}{2 e}}-12 x^2-18 x^3+\left (2 x+3 x^2\right ) \log (3)\right ) \, dx\\ &=\frac {1}{24} \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} \left (12 e+48 e^{1+\frac {x^2+x^3}{2 e}}-12 x^2-18 x^3+\left (2 x+3 x^2\right ) \log (3)\right ) \, dx\\ &=\frac {1}{24} \int \left (48+12 e^{-\frac {x^2}{2 e}-\frac {x^3}{2 e}}-12 e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^2-18 e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^3+e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x (2+3 x) \log (3)\right ) \, dx\\ &=2 x+\frac {1}{2} \int e^{-\frac {x^2}{2 e}-\frac {x^3}{2 e}} \, dx-\frac {1}{2} \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^2 \, dx-\frac {3}{4} \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^3 \, dx+\frac {1}{24} \log (3) \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x (2+3 x) \, dx\\ &=2 x-\frac {1}{12} e^{-\frac {x^2}{2 e}-\frac {x^3}{2 e}} \log (3)+\frac {1}{2} \int e^{-\frac {x^2 (1+x)}{2 e}} \, dx-\frac {1}{2} \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^2 \, dx-\frac {3}{4} \int e^{-1-\frac {x^2}{2 e}-\frac {x^3}{2 e}} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 48, normalized size = 1.45 \begin {gather*} \frac {1}{24} \left (48 x+\frac {e^{-\frac {x^2 (1+x)}{2 e}} \left (36 x^2-2 \log (9)-2 x (-12+\log (27))\right )}{2+3 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 49, normalized size = 1.48 \begin {gather*} \frac {1}{12} \, {\left (6 \, x e + 24 \, x e^{\left (\frac {1}{2} \, {\left (x^{3} + x^{2} + 2 \, e\right )} e^{\left (-1\right )}\right )} - e \log \relax (3)\right )} e^{\left (-\frac {1}{2} \, {\left (x^{3} + x^{2} + 2 \, e\right )} e^{\left (-1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 35, normalized size = 1.06 \begin {gather*} \frac {1}{2} \, x e^{\left (-\frac {1}{2} \, {\left (x^{3} + x^{2}\right )} e^{\left (-1\right )}\right )} - \frac {1}{12} \, e^{\left (-\frac {1}{2} \, {\left (x^{3} + x^{2}\right )} e^{\left (-1\right )}\right )} \log \relax (3) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 36, normalized size = 1.09
method | result | size |
risch | \(2 x +\frac {\left (-2 \,{\mathrm e} \ln \relax (3)+12 x \,{\mathrm e}\right ) {\mathrm e}^{-1-\frac {x^{3} {\mathrm e}^{-1}}{2}-\frac {x^{2} {\mathrm e}^{-1}}{2}}}{24}\) | \(36\) |
norman | \(\left (\frac {x}{2}+2 x \,{\mathrm e}^{\frac {\left (x^{3}+x^{2}\right ) {\mathrm e}^{-1}}{2}}-\frac {\ln \relax (3)}{12}\right ) {\mathrm e}^{-\frac {\left (x^{3}+x^{2}\right ) {\mathrm e}^{-1}}{2}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 30, normalized size = 0.91 \begin {gather*} \frac {1}{12} \, {\left (6 \, x - \log \relax (3)\right )} e^{\left (-\frac {1}{2} \, x^{3} e^{\left (-1\right )} - \frac {1}{2} \, x^{2} e^{\left (-1\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 43, normalized size = 1.30 \begin {gather*} 2\,x-\frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-1}\,x^3}{2}-\frac {{\mathrm {e}}^{-1}\,x^2}{2}}\,\ln \relax (3)}{12}+\frac {x\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-1}\,x^3}{2}-\frac {{\mathrm {e}}^{-1}\,x^2}{2}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 0.79 \begin {gather*} 2 x + \frac {\left (6 x - \log {\relax (3 )}\right ) e^{- \frac {\frac {x^{3}}{2} + \frac {x^{2}}{2}}{e}}}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________