3.17.43 14(4+e14(ex+4x)(4+ex)4log(x))dx

Optimal. Leaf size=19 e14(ex+4x)xlog(x)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, number of rulesintegrand size = 0.103, Rules used = {12, 6706, 2295} e14(4x+ex)xlog(x)

Antiderivative was successfully verified.

[In]

Int[(-4 + E^((E^x + 4*x)/4)*(4 + E^x) - 4*Log[x])/4,x]

[Out]

E^((E^x + 4*x)/4) - x*Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=14(4+e14(ex+4x)(4+ex)4log(x))dx=x+14e14(ex+4x)(4+ex)dxlog(x)dx=e14(ex+4x)xlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 17, normalized size = 0.89 eex4+xxlog(x)

Antiderivative was successfully verified.

[In]

Integrate[(-4 + E^((E^x + 4*x)/4)*(4 + E^x) - 4*Log[x])/4,x]

[Out]

E^(E^x/4 + x) - x*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 13, normalized size = 0.68 xlog(x)+e(x+14ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(exp(x)+4)*exp(x+1/4*exp(x))-log(x)-1,x, algorithm="fricas")

[Out]

-x*log(x) + e^(x + 1/4*e^x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 13, normalized size = 0.68 xlog(x)+e(x+14ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(exp(x)+4)*exp(x+1/4*exp(x))-log(x)-1,x, algorithm="giac")

[Out]

-x*log(x) + e^(x + 1/4*e^x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 14, normalized size = 0.74




method result size



norman ex+ex4xln(x) 14
risch ex+ex4xln(x) 14
default exeex4xln(x) 15



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(exp(x)+4)*exp(x+1/4*exp(x))-ln(x)-1,x,method=_RETURNVERBOSE)

[Out]

exp(x+1/4*exp(x))-x*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 13, normalized size = 0.68 xlog(x)+e(x+14ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(exp(x)+4)*exp(x+1/4*exp(x))-log(x)-1,x, algorithm="maxima")

[Out]

-x*log(x) + e^(x + 1/4*e^x)

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 13, normalized size = 0.68 ex+ex4xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x + exp(x)/4)*(exp(x) + 4))/4 - log(x) - 1,x)

[Out]

exp(x + exp(x)/4) - x*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 12, normalized size = 0.63 xlog(x)+ex+ex4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(exp(x)+4)*exp(x+1/4*exp(x))-ln(x)-1,x)

[Out]

-x*log(x) + exp(x + exp(x)/4)

________________________________________________________________________________________