Optimal. Leaf size=29 \[ \log (x)+\left (-\log ^2(3 x)+\frac {\log (10)}{\log \left (5+\frac {x^2}{e^3}\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2 \log ^2(10)+4 x^2 \log (10) \log ^2(3 x) \log \left (\frac {5 e^3+x^2}{e^3}\right )+\left (-20 e^3-4 x^2\right ) \log (10) \log (3 x) \log ^2\left (\frac {5 e^3+x^2}{e^3}\right )+\left (5 e^3+x^2\right ) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )+\left (20 e^3+4 x^2\right ) \log ^3(3 x) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )}{\left (5 e^3 x+x^3\right ) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^2 \log ^2(10)+4 x^2 \log (10) \log ^2(3 x) \log \left (\frac {5 e^3+x^2}{e^3}\right )+\left (-20 e^3-4 x^2\right ) \log (10) \log (3 x) \log ^2\left (\frac {5 e^3+x^2}{e^3}\right )+\left (5 e^3+x^2\right ) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )+\left (20 e^3+4 x^2\right ) \log ^3(3 x) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )}{x \left (5 e^3+x^2\right ) \log ^3\left (\frac {5 e^3+x^2}{e^3}\right )} \, dx\\ &=\int \frac {1+4 \log ^3(3 x)-\frac {4 x^2 \log ^2(10)}{\left (5 e^3+x^2\right ) \log ^3\left (5+\frac {x^2}{e^3}\right )}+\frac {4 x^2 \log (10) \log ^2(3 x)}{\left (5 e^3+x^2\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )}-\frac {4 \log (10) \log (3 x)}{\log \left (5+\frac {x^2}{e^3}\right )}}{x} \, dx\\ &=\int \left (\frac {1+4 \log ^3(3 x)}{x}-\frac {4 x \log ^2(10)}{\left (5 e^3+x^2\right ) \log ^3\left (5+\frac {x^2}{e^3}\right )}+\frac {4 x \log (10) \log ^2(3 x)}{\left (5 e^3+x^2\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )}-\frac {4 \log (10) \log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )}\right ) \, dx\\ &=(4 \log (10)) \int \frac {x \log ^2(3 x)}{\left (5 e^3+x^2\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx-\left (4 \log ^2(10)\right ) \int \frac {x}{\left (5 e^3+x^2\right ) \log ^3\left (5+\frac {x^2}{e^3}\right )} \, dx+\int \frac {1+4 \log ^3(3 x)}{x} \, dx\\ &=(4 \log (10)) \int \left (-\frac {\log ^2(3 x)}{2 \left (i \sqrt {5} e^{3/2}-x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )}+\frac {\log ^2(3 x)}{2 \left (i \sqrt {5} e^{3/2}+x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )}\right ) \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx-\left (2 \log ^2(10)\right ) \operatorname {Subst}\left (\int \frac {1}{\left (5 e^3+x\right ) \log ^3\left (5+\frac {x}{e^3}\right )} \, dx,x,x^2\right )+\int \left (\frac {1}{x}+\frac {4 \log ^3(3 x)}{x}\right ) \, dx\\ &=\log (x)+4 \int \frac {\log ^3(3 x)}{x} \, dx-(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}-x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx+(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}+x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx-\left (2 e^3 \log ^2(10)\right ) \operatorname {Subst}\left (\int \frac {1}{e^3 x \log ^3(x)} \, dx,x,5+\frac {x^2}{e^3}\right )\\ &=\log (x)+4 \operatorname {Subst}\left (\int x^3 \, dx,x,\log (3 x)\right )-(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}-x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx+(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}+x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx-\left (2 \log ^2(10)\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,5+\frac {x^2}{e^3}\right )\\ &=\log (x)+\log ^4(3 x)-(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}-x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx+(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}+x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx-\left (2 \log ^2(10)\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (5+\frac {x^2}{e^3}\right )\right )\\ &=\log (x)+\log ^4(3 x)+\frac {\log ^2(10)}{\log ^2\left (5+\frac {x^2}{e^3}\right )}-(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}-x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx+(2 \log (10)) \int \frac {\log ^2(3 x)}{\left (i \sqrt {5} e^{3/2}+x\right ) \log ^2\left (5+\frac {x^2}{e^3}\right )} \, dx-(4 \log (10)) \int \frac {\log (3 x)}{x \log \left (5+\frac {x^2}{e^3}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 48, normalized size = 1.66 \begin {gather*} \log (x)+\log ^4(3 x)+\frac {\log ^2(10)}{\log ^2\left (5+\frac {x^2}{e^3}\right )}-\frac {2 \log (10) \log ^2(3 x)}{\log \left (5+\frac {x^2}{e^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.83, size = 82, normalized size = 2.83 \begin {gather*} \frac {\log \left ({\left (x^{2} + 5 \, e^{3}\right )} e^{\left (-3\right )}\right )^{2} \log \left (3 \, x\right )^{4} - 2 \, \log \left (10\right ) \log \left ({\left (x^{2} + 5 \, e^{3}\right )} e^{\left (-3\right )}\right ) \log \left (3 \, x\right )^{2} + \log \left ({\left (x^{2} + 5 \, e^{3}\right )} e^{\left (-3\right )}\right )^{2} \log \left (3 \, x\right ) + \log \left (10\right )^{2}}{\log \left ({\left (x^{2} + 5 \, e^{3}\right )} e^{\left (-3\right )}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.49, size = 135, normalized size = 4.66 \begin {gather*} \frac {\log \left (x^{2} + 5 \, e^{3}\right )^{2} \log \left (3 \, x\right )^{4} - 6 \, \log \left (x^{2} + 5 \, e^{3}\right ) \log \left (3 \, x\right )^{4} - 2 \, \log \left (10\right ) \log \left (x^{2} + 5 \, e^{3}\right ) \log \left (3 \, x\right )^{2} + 9 \, \log \left (3 \, x\right )^{4} + 6 \, \log \left (10\right ) \log \left (3 \, x\right )^{2} + \log \left (x^{2} + 5 \, e^{3}\right )^{2} \log \relax (x) + \log \left (10\right )^{2} - 6 \, \log \left (x^{2} + 5 \, e^{3}\right ) \log \relax (x) + 9 \, \log \relax (x)}{\log \left (x^{2} + 5 \, e^{3}\right )^{2} - 6 \, \log \left (x^{2} + 5 \, e^{3}\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.28, size = 84, normalized size = 2.90
method | result | size |
risch | \(\ln \left (3 x \right )^{4}+\ln \relax (x )+\frac {-2 \ln \left (3 x \right )^{2} \ln \left (\left (5 \,{\mathrm e}^{3}+x^{2}\right ) {\mathrm e}^{-3}\right ) \ln \relax (5)-2 \ln \left (3 x \right )^{2} \ln \left (\left (5 \,{\mathrm e}^{3}+x^{2}\right ) {\mathrm e}^{-3}\right ) \ln \relax (2)+\ln \relax (5)^{2}+2 \ln \relax (2) \ln \relax (5)+\ln \relax (2)^{2}}{\ln \left (\left (5 \,{\mathrm e}^{3}+x^{2}\right ) {\mathrm e}^{-3}\right )^{2}}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 163, normalized size = 5.62 \begin {gather*} \frac {\log \left (10\right )^{2}}{\log \left (x^{2} + 5 \, e^{3}\right )^{2} - 6 \, \log \left (x^{2} + 5 \, e^{3}\right ) + 9} - \frac {12 \, \log \relax (3) \log \relax (x)^{3} + 3 \, \log \relax (x)^{4} + 2 \, \log \relax (5) \log \relax (3)^{2} + 2 \, \log \relax (3)^{2} \log \relax (2) + 2 \, {\left (9 \, \log \relax (3)^{2} + \log \relax (5) + \log \relax (2)\right )} \log \relax (x)^{2} - {\left (6 \, \log \relax (3)^{2} \log \relax (x)^{2} + 4 \, \log \relax (3) \log \relax (x)^{3} + \log \relax (x)^{4} + {\left (4 \, \log \relax (3)^{3} + 1\right )} \log \relax (x)\right )} \log \left (x^{2} + 5 \, e^{3}\right ) + {\left (12 \, \log \relax (3)^{3} + 4 \, \log \relax (5) \log \relax (3) + 4 \, \log \relax (3) \log \relax (2) + 3\right )} \log \relax (x)}{\log \left (x^{2} + 5 \, e^{3}\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.91, size = 106, normalized size = 3.66 \begin {gather*} \ln \relax (x)+4\,\ln \relax (3)\,{\ln \relax (x)}^3+4\,{\ln \relax (3)}^3\,\ln \relax (x)+{\ln \relax (x)}^4+6\,{\ln \relax (3)}^2\,{\ln \relax (x)}^2+\frac {{\ln \left (10\right )}^2}{{\ln \left ({\mathrm {e}}^{-3}\,x^2+5\right )}^2}-\frac {2\,{\ln \relax (3)}^2\,\ln \left (10\right )}{\ln \left ({\mathrm {e}}^{-3}\,x^2+5\right )}-\frac {2\,\ln \left (10\right )\,{\ln \relax (x)}^2}{\ln \left ({\mathrm {e}}^{-3}\,x^2+5\right )}-\frac {4\,\ln \relax (3)\,\ln \left (10\right )\,\ln \relax (x)}{\ln \left ({\mathrm {e}}^{-3}\,x^2+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 54, normalized size = 1.86 \begin {gather*} \frac {- 2 \log {\left (10 \right )} \log {\left (3 x \right )}^{2} \log {\left (\frac {x^{2} + 5 e^{3}}{e^{3}} \right )} + \log {\left (10 \right )}^{2}}{\log {\left (\frac {x^{2} + 5 e^{3}}{e^{3}} \right )}^{2}} + \log {\relax (x )} + \log {\left (3 x \right )}^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________