3.17.46 4log(x)+(2x+6x3+2xlog(x))log(x2)+(24log(x))log(x2)log(log(x2))(3x4x2log(x))log(x2)+xlog(x)log(x2)log(log(x2))dx

Optimal. Leaf size=24 5+log((3x+log(x)(xlog(log(x2)))x2)2)

________________________________________________________________________________________

Rubi [F]  time = 2.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4log(x)+(2x+6x3+2xlog(x))log(x2)+(24log(x))log(x2)log(log(x2))(3x4x2log(x))log(x2)+xlog(x)log(x2)log(log(x2))dx

Verification is not applicable to the result.

[In]

Int[(4*Log[x] + (-2*x + 6*x^3 + 2*x*Log[x])*Log[x^2] + (2 - 4*Log[x])*Log[x^2]*Log[Log[x^2]])/((3*x^4 - x^2*Lo
g[x])*Log[x^2] + x*Log[x]*Log[x^2]*Log[Log[x^2]]),x]

[Out]

-4*Log[x] + 2*Log[Log[x]] + 6*Defer[Int][x^2/(Log[x]*(-3*x^3 + x*Log[x] - Log[x]*Log[Log[x^2]])), x] + 2*Defer
[Int][Log[x]/(-3*x^3 + x*Log[x] - Log[x]*Log[Log[x^2]]), x] + 18*Defer[Int][x^2/(3*x^3 - x*Log[x] + Log[x]*Log
[Log[x^2]]), x] + 4*Defer[Int][Log[x]/(x*Log[x^2]*(3*x^3 - x*Log[x] + Log[x]*Log[Log[x^2]])), x]

Rubi steps

integral=4log(x)+(2x+6x3+2xlog(x))log(x2)+(24log(x))log(x2)log(log(x2))xlog(x2)(3x3xlog(x)+log(x)log(log(x2)))dx=(2(1+2log(x))xlog(x)+2(2log2(x)3x3log(x2)+9x3log(x)log(x2)xlog2(x)log(x2))xlog(x)log(x2)(3x3xlog(x)+log(x)log(log(x2))))dx=(21+2log(x)xlog(x)dx)+22log2(x)3x3log(x2)+9x3log(x)log(x2)xlog2(x)log(x2)xlog(x)log(x2)(3x3xlog(x)+log(x)log(log(x2)))dx=2(3x2log(x)(3x3+xlog(x)log(x)log(log(x2)))+log(x)3x3+xlog(x)log(x)log(log(x2))+9x23x3xlog(x)+log(x)log(log(x2))+2log(x)xlog(x2)(3x3xlog(x)+log(x)log(log(x2))))dx2Subst(1+2xxdx,x,log(x))=2log(x)3x3+xlog(x)log(x)log(log(x2))dx2Subst((21x)dx,x,log(x))+4log(x)xlog(x2)(3x3xlog(x)+log(x)log(log(x2)))dx+6x2log(x)(3x3+xlog(x)log(x)log(log(x2)))dx+18x23x3xlog(x)+log(x)log(log(x2))dx=4log(x)+2log(log(x))+2log(x)3x3+xlog(x)log(x)log(log(x2))dx+4log(x)xlog(x2)(3x3xlog(x)+log(x)log(log(x2)))dx+6x2log(x)(3x3+xlog(x)log(x)log(log(x2)))dx+18x23x3xlog(x)+log(x)log(log(x2))dx

________________________________________________________________________________________

Mathematica [B]  time = 0.39, size = 63, normalized size = 2.62 2(2log(x)+log(6x3+2x(log(x)log(x2)2)+xlog(x2)2(log(x)log(x2)2)log(log(x2))log(x2)log(log(x2))))

Antiderivative was successfully verified.

[In]

Integrate[(4*Log[x] + (-2*x + 6*x^3 + 2*x*Log[x])*Log[x^2] + (2 - 4*Log[x])*Log[x^2]*Log[Log[x^2]])/((3*x^4 -
x^2*Log[x])*Log[x^2] + x*Log[x]*Log[x^2]*Log[Log[x^2]]),x]

[Out]

2*(-2*Log[x] + Log[-6*x^3 + 2*x*(Log[x] - Log[x^2]/2) + x*Log[x^2] - 2*(Log[x] - Log[x^2]/2)*Log[Log[x^2]] - L
og[x^2]*Log[Log[x^2]]])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 39, normalized size = 1.62 4log(x)+2log(2log(x))+2log(3x3xlog(x)+log(x)log(2log(x))log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="fricas")

[Out]

-4*log(x) + 2*log(2*log(x)) + 2*log((3*x^3 - x*log(x) + log(x)*log(2*log(x)))/log(x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 2((2log(x)1)log(x2)log(log(x2))(3x3+xlog(x)x)log(x2)2log(x))xlog(x2)log(x)log(log(x2))+(3x4x2log(x))log(x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="giac")

[Out]

integrate(-2*((2*log(x) - 1)*log(x^2)*log(log(x^2)) - (3*x^3 + x*log(x) - x)*log(x^2) - 2*log(x))/(x*log(x^2)*
log(x)*log(log(x^2)) + (3*x^4 - x^2*log(x))*log(x^2)), x)

________________________________________________________________________________________

maple [C]  time = 0.10, size = 65, normalized size = 2.71




method result size



risch 4ln(x)+2ln(ln(x))+2ln(ln(2ln(x)iπcsgn(ix2)(csgn(ix2)+csgn(ix))22)+x(3x2ln(x))ln(x)) 65



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*ln(x)+2)*ln(x^2)*ln(ln(x^2))+(2*x*ln(x)+6*x^3-2*x)*ln(x^2)+4*ln(x))/(x*ln(x)*ln(x^2)*ln(ln(x^2))+(-x^
2*ln(x)+3*x^4)*ln(x^2)),x,method=_RETURNVERBOSE)

[Out]

-4*ln(x)+2*ln(ln(x))+2*ln(ln(2*ln(x)-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)+csgn(I*x))^2)+x*(3*x^2-ln(x))/ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 40, normalized size = 1.67 4log(x)+2log(3x3(xlog(2))log(x)+log(x)log(log(x))log(x))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="maxima")

[Out]

-4*log(x) + 2*log((3*x^3 - (x - log(2))*log(x) + log(x)*log(log(x)))/log(x)) + 2*log(log(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 4ln(x)+ln(x2)(2xln(x)2x+6x3)ln(x2)ln(ln(x2))(4ln(x)2)ln(x2)(x2ln(x)3x4)xln(x2)ln(ln(x2))ln(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*log(x) + log(x^2)*(2*x*log(x) - 2*x + 6*x^3) - log(x^2)*log(log(x^2))*(4*log(x) - 2))/(log(x^2)*(x^2*l
og(x) - 3*x^4) - x*log(x^2)*log(log(x^2))*log(x)),x)

[Out]

int(-(4*log(x) + log(x^2)*(2*x*log(x) - 2*x + 6*x^3) - log(x^2)*log(log(x^2))*(4*log(x) - 2))/(log(x^2)*(x^2*l
og(x) - 3*x^4) - x*log(x^2)*log(log(x^2))*log(x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.44, size = 34, normalized size = 1.42 4log(x)+2log(3x3xlog(x)log(x)+log(2log(x)))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*ln(x)+2)*ln(x**2)*ln(ln(x**2))+(2*x*ln(x)+6*x**3-2*x)*ln(x**2)+4*ln(x))/(x*ln(x)*ln(x**2)*ln(ln
(x**2))+(-x**2*ln(x)+3*x**4)*ln(x**2)),x)

[Out]

-4*log(x) + 2*log((3*x**3 - x*log(x))/log(x) + log(2*log(x))) + 2*log(log(x))

________________________________________________________________________________________