3.17.46
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [F] time = 2.79, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(4*Log[x] + (-2*x + 6*x^3 + 2*x*Log[x])*Log[x^2] + (2 - 4*Log[x])*Log[x^2]*Log[Log[x^2]])/((3*x^4 - x^2*Lo
g[x])*Log[x^2] + x*Log[x]*Log[x^2]*Log[Log[x^2]]),x]
[Out]
-4*Log[x] + 2*Log[Log[x]] + 6*Defer[Int][x^2/(Log[x]*(-3*x^3 + x*Log[x] - Log[x]*Log[Log[x^2]])), x] + 2*Defer
[Int][Log[x]/(-3*x^3 + x*Log[x] - Log[x]*Log[Log[x^2]]), x] + 18*Defer[Int][x^2/(3*x^3 - x*Log[x] + Log[x]*Log
[Log[x^2]]), x] + 4*Defer[Int][Log[x]/(x*Log[x^2]*(3*x^3 - x*Log[x] + Log[x]*Log[Log[x^2]])), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.39, size = 63, normalized size = 2.62
Antiderivative was successfully verified.
[In]
Integrate[(4*Log[x] + (-2*x + 6*x^3 + 2*x*Log[x])*Log[x^2] + (2 - 4*Log[x])*Log[x^2]*Log[Log[x^2]])/((3*x^4 -
x^2*Log[x])*Log[x^2] + x*Log[x]*Log[x^2]*Log[Log[x^2]]),x]
[Out]
2*(-2*Log[x] + Log[-6*x^3 + 2*x*(Log[x] - Log[x^2]/2) + x*Log[x^2] - 2*(Log[x] - Log[x^2]/2)*Log[Log[x^2]] - L
og[x^2]*Log[Log[x^2]]])
________________________________________________________________________________________
fricas [A] time = 0.69, size = 39, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="fricas")
[Out]
-4*log(x) + 2*log(2*log(x)) + 2*log((3*x^3 - x*log(x) + log(x)*log(2*log(x)))/log(x))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="giac")
[Out]
integrate(-2*((2*log(x) - 1)*log(x^2)*log(log(x^2)) - (3*x^3 + x*log(x) - x)*log(x^2) - 2*log(x))/(x*log(x^2)*
log(x)*log(log(x^2)) + (3*x^4 - x^2*log(x))*log(x^2)), x)
________________________________________________________________________________________
maple [C] time = 0.10, size = 65, normalized size = 2.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*ln(x)+2)*ln(x^2)*ln(ln(x^2))+(2*x*ln(x)+6*x^3-2*x)*ln(x^2)+4*ln(x))/(x*ln(x)*ln(x^2)*ln(ln(x^2))+(-x^
2*ln(x)+3*x^4)*ln(x^2)),x,method=_RETURNVERBOSE)
[Out]
-4*ln(x)+2*ln(ln(x))+2*ln(ln(2*ln(x)-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)+csgn(I*x))^2)+x*(3*x^2-ln(x))/ln(x))
________________________________________________________________________________________
maxima [A] time = 0.58, size = 40, normalized size = 1.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+2)*log(x^2)*log(log(x^2))+(2*x*log(x)+6*x^3-2*x)*log(x^2)+4*log(x))/(x*log(x)*log(x^2)*l
og(log(x^2))+(-x^2*log(x)+3*x^4)*log(x^2)),x, algorithm="maxima")
[Out]
-4*log(x) + 2*log((3*x^3 - (x - log(2))*log(x) + log(x)*log(log(x)))/log(x)) + 2*log(log(x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(4*log(x) + log(x^2)*(2*x*log(x) - 2*x + 6*x^3) - log(x^2)*log(log(x^2))*(4*log(x) - 2))/(log(x^2)*(x^2*l
og(x) - 3*x^4) - x*log(x^2)*log(log(x^2))*log(x)),x)
[Out]
int(-(4*log(x) + log(x^2)*(2*x*log(x) - 2*x + 6*x^3) - log(x^2)*log(log(x^2))*(4*log(x) - 2))/(log(x^2)*(x^2*l
og(x) - 3*x^4) - x*log(x^2)*log(log(x^2))*log(x)), x)
________________________________________________________________________________________
sympy [A] time = 0.44, size = 34, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*ln(x)+2)*ln(x**2)*ln(ln(x**2))+(2*x*ln(x)+6*x**3-2*x)*ln(x**2)+4*ln(x))/(x*ln(x)*ln(x**2)*ln(ln
(x**2))+(-x**2*ln(x)+3*x**4)*ln(x**2)),x)
[Out]
-4*log(x) + 2*log((3*x**3 - x*log(x))/log(x) + log(2*log(x))) + 2*log(log(x))
________________________________________________________________________________________