3.17.50
Optimal. Leaf size=17
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-2*Log[x] - Log[(5*x)/4] + (-x + x*Log[x])*Log[(5*x)/4]^3)/(x*Log[x]^2*Log[(5*x)/4]^3),x]
[Out]
x/Log[x] - 2*Defer[Int][1/(x*Log[x]*Log[(5*x)/4]^3), x] - Defer[Int][1/(x*Log[x]^2*Log[(5*x)/4]^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 15, normalized size = 0.88
Antiderivative was successfully verified.
[In]
Integrate[(-2*Log[x] - Log[(5*x)/4] + (-x + x*Log[x])*Log[(5*x)/4]^3)/(x*Log[x]^2*Log[(5*x)/4]^3),x]
[Out]
(x + Log[(5*x)/4]^(-2))/Log[x]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 44, normalized size = 2.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="fricas")
[Out]
(x*log(5/4)^2 + 2*x*log(5/4)*log(x) + x*log(x)^2 + 1)/(log(5/4)^2*log(x) + 2*log(5/4)*log(x)^2 + log(x)^3)
________________________________________________________________________________________
giac [B] time = 0.26, size = 167, normalized size = 9.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="giac")
[Out]
(x*log(5)^2 - 4*x*log(5)*log(2) + 4*x*log(2)^2 + 1)/(log(5)^2*log(x) - 4*log(5)*log(2)*log(x) + 4*log(2)^2*log
(x)) - (2*log(5) - 4*log(2) + log(x))/(log(5)^4 - 8*log(5)^3*log(2) + 24*log(5)^2*log(2)^2 - 32*log(5)*log(2)^
3 + 16*log(2)^4 + 2*log(5)^3*log(x) - 12*log(5)^2*log(2)*log(x) + 24*log(5)*log(2)^2*log(x) - 16*log(2)^3*log(
x) + log(5)^2*log(x)^2 - 4*log(5)*log(2)*log(x)^2 + 4*log(2)^2*log(x)^2)
________________________________________________________________________________________
maple [B] time = 0.22, size = 65, normalized size = 3.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x*ln(x)-x)*ln(5/4*x)^3-ln(5/4*x)-2*ln(x))/x/ln(x)^2/ln(5/4*x)^3,x,method=_RETURNVERBOSE)
[Out]
(4-16*x*ln(2)*ln(x)-16*x*ln(2)*ln(5)+16*x*ln(2)^2+4*x*ln(x)^2+4*x*ln(5)^2+8*x*ln(5)*ln(x))/(2*ln(5)-4*ln(2)+2*
ln(x))^2/ln(x)
________________________________________________________________________________________
maxima [C] time = 0.64, size = 186, normalized size = 10.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="maxima")
[Out]
-(3*log(5) - 6*log(2) + 2*log(x))/(log(5)^4 - 8*log(5)^3*log(2) + 24*log(5)^2*log(2)^2 - 32*log(5)*log(2)^3 +
16*log(2)^4 + (log(5)^2 - 4*log(5)*log(2) + 4*log(2)^2)*log(x)^2 + 2*(log(5)^3 - 6*log(5)^2*log(2) + 12*log(5)
*log(2)^2 - 8*log(2)^3)*log(x)) + (log(5) - 2*log(2) + 2*log(x))/((log(5)^2 - 4*log(5)*log(2) + 4*log(2)^2)*lo
g(x)^2 + (log(5)^3 - 6*log(5)^2*log(2) + 12*log(5)*log(2)^2 - 8*log(2)^3)*log(x)) + Ei(log(x)) - gamma(-1, -lo
g(x))
________________________________________________________________________________________
mupad [B] time = 1.18, size = 21, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log((5*x)/4) + 2*log(x) + log((5*x)/4)^3*(x - x*log(x)))/(x*log((5*x)/4)^3*log(x)^2),x)
[Out]
(x*log((5*x)/4)^2 + 1)/(log((5*x)/4)^2*log(x))
________________________________________________________________________________________
sympy [B] time = 0.43, size = 94, normalized size = 5.53
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x*ln(x)-x)*ln(5/4*x)**3-ln(5/4*x)-2*ln(x))/x/ln(x)**2/ln(5/4*x)**3,x)
[Out]
(x*log(x)**2 - 4*x*log(2)*log(5) + 4*x*log(2)**2 + x*log(5)**2 + (-4*x*log(2) + 2*x*log(5))*log(x) + 1)/(log(x
)**3 + (-4*log(2) + 2*log(5))*log(x)**2 + (-4*log(2)*log(5) + 4*log(2)**2 + log(5)**2)*log(x))
________________________________________________________________________________________