3.17.50 2log(x)log(5x4)+(x+xlog(x))log3(5x4)xlog2(x)log3(5x4)dx

Optimal. Leaf size=17 2+x+1log2(5x4)log(x)

________________________________________________________________________________________

Rubi [F]  time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2log(x)log(5x4)+(x+xlog(x))log3(5x4)xlog2(x)log3(5x4)dx

Verification is not applicable to the result.

[In]

Int[(-2*Log[x] - Log[(5*x)/4] + (-x + x*Log[x])*Log[(5*x)/4]^3)/(x*Log[x]^2*Log[(5*x)/4]^3),x]

[Out]

x/Log[x] - 2*Defer[Int][1/(x*Log[x]*Log[(5*x)/4]^3), x] - Defer[Int][1/(x*Log[x]^2*Log[(5*x)/4]^2), x]

Rubi steps

integral=(1+log(x)log2(x)2xlog(x)log3(5x4)1xlog2(x)log2(5x4))dx=(21xlog(x)log3(5x4)dx)+1+log(x)log2(x)dx1xlog2(x)log2(5x4)dx=(21xlog(x)log3(5x4)dx)+(1log2(x)+1log(x))dx1xlog2(x)log2(5x4)dx=(21xlog(x)log3(5x4)dx)1log2(x)dx+1log(x)dx1xlog2(x)log2(5x4)dx=xlog(x)+li(x)21xlog(x)log3(5x4)dx1log(x)dx1xlog2(x)log2(5x4)dx=xlog(x)21xlog(x)log3(5x4)dx1xlog2(x)log2(5x4)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 15, normalized size = 0.88 x+1log2(5x4)log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-2*Log[x] - Log[(5*x)/4] + (-x + x*Log[x])*Log[(5*x)/4]^3)/(x*Log[x]^2*Log[(5*x)/4]^3),x]

[Out]

(x + Log[(5*x)/4]^(-2))/Log[x]

________________________________________________________________________________________

fricas [B]  time = 0.87, size = 44, normalized size = 2.59 xlog(54)2+2xlog(54)log(x)+xlog(x)2+1log(54)2log(x)+2log(54)log(x)2+log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="fricas")

[Out]

(x*log(5/4)^2 + 2*x*log(5/4)*log(x) + x*log(x)^2 + 1)/(log(5/4)^2*log(x) + 2*log(5/4)*log(x)^2 + log(x)^3)

________________________________________________________________________________________

giac [B]  time = 0.26, size = 167, normalized size = 9.82 xlog(5)24xlog(5)log(2)+4xlog(2)2+1log(5)2log(x)4log(5)log(2)log(x)+4log(2)2log(x)2log(5)4log(2)+log(x)log(5)48log(5)3log(2)+24log(5)2log(2)232log(5)log(2)3+16log(2)4+2log(5)3log(x)12log(5)2log(2)log(x)+24log(5)log(2)2log(x)16log(2)3log(x)+log(5)2log(x)24log(5)log(2)log(x)2+4log(2)2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="giac")

[Out]

(x*log(5)^2 - 4*x*log(5)*log(2) + 4*x*log(2)^2 + 1)/(log(5)^2*log(x) - 4*log(5)*log(2)*log(x) + 4*log(2)^2*log
(x)) - (2*log(5) - 4*log(2) + log(x))/(log(5)^4 - 8*log(5)^3*log(2) + 24*log(5)^2*log(2)^2 - 32*log(5)*log(2)^
3 + 16*log(2)^4 + 2*log(5)^3*log(x) - 12*log(5)^2*log(2)*log(x) + 24*log(5)*log(2)^2*log(x) - 16*log(2)^3*log(
x) + log(5)^2*log(x)^2 - 4*log(5)*log(2)*log(x)^2 + 4*log(2)^2*log(x)^2)

________________________________________________________________________________________

maple [B]  time = 0.22, size = 65, normalized size = 3.82




method result size



risch 416xln(2)ln(x)16xln(2)ln(5)+16xln(2)2+4xln(x)2+4xln(5)2+8xln(5)ln(x)(2ln(5)4ln(2)+2ln(x))2ln(x) 65



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x*ln(x)-x)*ln(5/4*x)^3-ln(5/4*x)-2*ln(x))/x/ln(x)^2/ln(5/4*x)^3,x,method=_RETURNVERBOSE)

[Out]

(4-16*x*ln(2)*ln(x)-16*x*ln(2)*ln(5)+16*x*ln(2)^2+4*x*ln(x)^2+4*x*ln(5)^2+8*x*ln(5)*ln(x))/(2*ln(5)-4*ln(2)+2*
ln(x))^2/ln(x)

________________________________________________________________________________________

maxima [C]  time = 0.64, size = 186, normalized size = 10.94 3log(5)6log(2)+2log(x)log(5)48log(5)3log(2)+24log(5)2log(2)232log(5)log(2)3+16log(2)4+(log(5)24log(5)log(2)+4log(2)2)log(x)2+2(log(5)36log(5)2log(2)+12log(5)log(2)28log(2)3)log(x)+log(5)2log(2)+2log(x)(log(5)24log(5)log(2)+4log(2)2)log(x)2+(log(5)36log(5)2log(2)+12log(5)log(2)28log(2)3)log(x)+Ei(log(x))Γ(1,log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(x)-x)*log(5/4*x)^3-log(5/4*x)-2*log(x))/x/log(x)^2/log(5/4*x)^3,x, algorithm="maxima")

[Out]

-(3*log(5) - 6*log(2) + 2*log(x))/(log(5)^4 - 8*log(5)^3*log(2) + 24*log(5)^2*log(2)^2 - 32*log(5)*log(2)^3 +
16*log(2)^4 + (log(5)^2 - 4*log(5)*log(2) + 4*log(2)^2)*log(x)^2 + 2*(log(5)^3 - 6*log(5)^2*log(2) + 12*log(5)
*log(2)^2 - 8*log(2)^3)*log(x)) + (log(5) - 2*log(2) + 2*log(x))/((log(5)^2 - 4*log(5)*log(2) + 4*log(2)^2)*lo
g(x)^2 + (log(5)^3 - 6*log(5)^2*log(2) + 12*log(5)*log(2)^2 - 8*log(2)^3)*log(x)) + Ei(log(x)) - gamma(-1, -lo
g(x))

________________________________________________________________________________________

mupad [B]  time = 1.18, size = 21, normalized size = 1.24 xln(5x4)2+1ln(5x4)2ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log((5*x)/4) + 2*log(x) + log((5*x)/4)^3*(x - x*log(x)))/(x*log((5*x)/4)^3*log(x)^2),x)

[Out]

(x*log((5*x)/4)^2 + 1)/(log((5*x)/4)^2*log(x))

________________________________________________________________________________________

sympy [B]  time = 0.43, size = 94, normalized size = 5.53 xlog(x)24xlog(2)log(5)+4xlog(2)2+xlog(5)2+(4xlog(2)+2xlog(5))log(x)+1log(x)3+(4log(2)+2log(5))log(x)2+(4log(2)log(5)+4log(2)2+log(5)2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*ln(x)-x)*ln(5/4*x)**3-ln(5/4*x)-2*ln(x))/x/ln(x)**2/ln(5/4*x)**3,x)

[Out]

(x*log(x)**2 - 4*x*log(2)*log(5) + 4*x*log(2)**2 + x*log(5)**2 + (-4*x*log(2) + 2*x*log(5))*log(x) + 1)/(log(x
)**3 + (-4*log(2) + 2*log(5))*log(x)**2 + (-4*log(2)*log(5) + 4*log(2)**2 + log(5)**2)*log(x))

________________________________________________________________________________________