3.17.51
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [B] time = 0.82, antiderivative size = 60, normalized size of antiderivative = 2.31,
number of steps used = 16, number of rules used = 10, integrand size = 60, = 0.167, Rules used
= {6741, 12, 6742, 2353, 2306, 2309, 2178, 2302, 30, 2288}
Antiderivative was successfully verified.
[In]
Int[(-2 + 2*x + E^x*(-x - 3*x^2) + (1 + E^x*x^2)*Log[x])/(9*x^2*Log[2] - 6*x^2*Log[2]*Log[x] + x^2*Log[2]*Log[
x]^2),x]
[Out]
2/(Log[2]*(3 - Log[x])) + 1/(x*Log[2]*(3 - Log[x])) - (E^x*(3*x - x*Log[x]))/(x*Log[2]*(3 - Log[x])^2)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[(-2 + 2*x + E^x*(-x - 3*x^2) + (1 + E^x*x^2)*Log[x])/(9*x^2*Log[2] - 6*x^2*Log[2]*Log[x] + x^2*Log[2
]*Log[x]^2),x]
[Out]
(-1 - 2*x + E^x*x)/(x*Log[2]*(-3 + Log[x]))
________________________________________________________________________________________
fricas [A] time = 0.77, size = 24, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)*x^2+1)*log(x)+(-3*x^2-x)*exp(x)+2*x-2)/(x^2*log(2)*log(x)^2-6*x^2*log(2)*log(x)+9*x^2*log(2
)),x, algorithm="fricas")
[Out]
(x*e^x - 2*x - 1)/(x*log(2)*log(x) - 3*x*log(2))
________________________________________________________________________________________
giac [A] time = 0.34, size = 24, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)*x^2+1)*log(x)+(-3*x^2-x)*exp(x)+2*x-2)/(x^2*log(2)*log(x)^2-6*x^2*log(2)*log(x)+9*x^2*log(2
)),x, algorithm="giac")
[Out]
(x*e^x - 2*x - 1)/(x*log(2)*log(x) - 3*x*log(2))
________________________________________________________________________________________
maple [A] time = 0.25, size = 24, normalized size = 0.92
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((exp(x)*x^2+1)*ln(x)+(-3*x^2-x)*exp(x)+2*x-2)/(x^2*ln(2)*ln(x)^2-6*x^2*ln(2)*ln(x)+9*x^2*ln(2)),x,method=
_RETURNVERBOSE)
[Out]
1/x*(exp(x)*x-2*x-1)/ln(2)/(ln(x)-3)
________________________________________________________________________________________
maxima [A] time = 0.66, size = 24, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)*x^2+1)*log(x)+(-3*x^2-x)*exp(x)+2*x-2)/(x^2*log(2)*log(x)^2-6*x^2*log(2)*log(x)+9*x^2*log(2
)),x, algorithm="maxima")
[Out]
(x*e^x - 2*x - 1)/(x*log(2)*log(x) - 3*x*log(2))
________________________________________________________________________________________
mupad [B] time = 1.26, size = 25, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*x - exp(x)*(x + 3*x^2) + log(x)*(x^2*exp(x) + 1) - 2)/(9*x^2*log(2) - 6*x^2*log(2)*log(x) + x^2*log(2)*
log(x)^2),x)
[Out]
-(2*x - x*exp(x) + 1)/(x*log(2)*(log(x) - 3))
________________________________________________________________________________________
sympy [A] time = 0.31, size = 36, normalized size = 1.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp(x)*x**2+1)*ln(x)+(-3*x**2-x)*exp(x)+2*x-2)/(x**2*ln(2)*ln(x)**2-6*x**2*ln(2)*ln(x)+9*x**2*ln(2
)),x)
[Out]
(-2*x - 1)/(x*log(2)*log(x) - 3*x*log(2)) + exp(x)/(log(2)*log(x) - 3*log(2))
________________________________________________________________________________________