3.17.53 e256exxlog4(2)(ex(256x4096x24352x3)+(134x)log4(2))5log4(2)dx

Optimal. Leaf size=23 15e256exxlog4(2)(x17x2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 2, number of rules used = 2, integrand size = 49, number of rulesintegrand size = 0.041, Rules used = {12, 2288} (17x316x2+x)ex+256exxlog4(2)5(exx+ex)

Antiderivative was successfully verified.

[In]

Int[(E^((256*E^x*x)/Log[2]^4)*(E^x*(256*x - 4096*x^2 - 4352*x^3) + (1 - 34*x)*Log[2]^4))/(5*Log[2]^4),x]

[Out]

(E^(x + (256*E^x*x)/Log[2]^4)*(x - 16*x^2 - 17*x^3))/(5*(E^x + E^x*x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=e256exxlog4(2)(ex(256x4096x24352x3)+(134x)log4(2))dx5log4(2)=ex+256exxlog4(2)(x16x217x3)5(ex+exx)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 0.96 15e256exxlog4(2)x(1+17x)

Antiderivative was successfully verified.

[In]

Integrate[(E^((256*E^x*x)/Log[2]^4)*(E^x*(256*x - 4096*x^2 - 4352*x^3) + (1 - 34*x)*Log[2]^4))/(5*Log[2]^4),x]

[Out]

-1/5*(E^((256*E^x*x)/Log[2]^4)*x*(-1 + 17*x))

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 21, normalized size = 0.91 15(17x2x)e(256xexlog(2)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-4352*x^3-4096*x^2+256*x)*exp(x)+(-34*x+1)*log(2)^4)*exp(256*x*exp(x)/log(2)^4)/log(2)^4,x, al
gorithm="fricas")

[Out]

-1/5*(17*x^2 - x)*e^(256*x*e^x/log(2)^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 ((34x1)log(2)4+256(17x3+16x2x)ex)e(256xexlog(2)4)5log(2)4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-4352*x^3-4096*x^2+256*x)*exp(x)+(-34*x+1)*log(2)^4)*exp(256*x*exp(x)/log(2)^4)/log(2)^4,x, al
gorithm="giac")

[Out]

integrate(-1/5*((34*x - 1)*log(2)^4 + 256*(17*x^3 + 16*x^2 - x)*e^x)*e^(256*x*e^x/log(2)^4)/log(2)^4, x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 19, normalized size = 0.83




method result size



risch (17x1)xe256xexln(2)45 19
norman xln(2)3e256xexln(2)4517x2ln(2)3e256xexln(2)45ln(2)3 43



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*((-4352*x^3-4096*x^2+256*x)*exp(x)+(-34*x+1)*ln(2)^4)*exp(256*x*exp(x)/ln(2)^4)/ln(2)^4,x,method=_RETU
RNVERBOSE)

[Out]

-1/5*(17*x-1)*x*exp(256*x*exp(x)/ln(2)^4)

________________________________________________________________________________________

maxima [A]  time = 1.04, size = 33, normalized size = 1.43 (17x2log(2)4xlog(2)4)e(256xexlog(2)4)5log(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-4352*x^3-4096*x^2+256*x)*exp(x)+(-34*x+1)*log(2)^4)*exp(256*x*exp(x)/log(2)^4)/log(2)^4,x, al
gorithm="maxima")

[Out]

-1/5*(17*x^2*log(2)^4 - x*log(2)^4)*e^(256*x*e^x/log(2)^4)/log(2)^4

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 18, normalized size = 0.78 xe256xexln(2)4(17x1)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((256*x*exp(x))/log(2)^4)*(log(2)^4*(34*x - 1) + exp(x)*(4096*x^2 - 256*x + 4352*x^3)))/(5*log(2)^4),
x)

[Out]

-(x*exp((256*x*exp(x))/log(2)^4)*(17*x - 1))/5

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 20, normalized size = 0.87 (17x2+x)e256xexlog(2)45

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-4352*x**3-4096*x**2+256*x)*exp(x)+(-34*x+1)*ln(2)**4)*exp(256*x*exp(x)/ln(2)**4)/ln(2)**4,x)

[Out]

(-17*x**2 + x)*exp(256*x*exp(x)/log(2)**4)/5

________________________________________________________________________________________