Optimal. Leaf size=23 \[ \frac {1}{5} e^{\frac {256 e^x x}{\log ^4(2)}} \left (x-17 x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 2, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {12, 2288} \begin {gather*} \frac {\left (-17 x^3-16 x^2+x\right ) e^{x+\frac {256 e^x x}{\log ^4(2)}}}{5 \left (e^x x+e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{\frac {256 e^x x}{\log ^4(2)}} \left (e^x \left (256 x-4096 x^2-4352 x^3\right )+(1-34 x) \log ^4(2)\right ) \, dx}{5 \log ^4(2)}\\ &=\frac {e^{x+\frac {256 e^x x}{\log ^4(2)}} \left (x-16 x^2-17 x^3\right )}{5 \left (e^x+e^x x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.96 \begin {gather*} -\frac {1}{5} e^{\frac {256 e^x x}{\log ^4(2)}} x (-1+17 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 21, normalized size = 0.91 \begin {gather*} -\frac {1}{5} \, {\left (17 \, x^{2} - x\right )} e^{\left (\frac {256 \, x e^{x}}{\log \relax (2)^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (34 \, x - 1\right )} \log \relax (2)^{4} + 256 \, {\left (17 \, x^{3} + 16 \, x^{2} - x\right )} e^{x}\right )} e^{\left (\frac {256 \, x e^{x}}{\log \relax (2)^{4}}\right )}}{5 \, \log \relax (2)^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.83
method | result | size |
risch | \(-\frac {\left (17 x -1\right ) x \,{\mathrm e}^{\frac {256 x \,{\mathrm e}^{x}}{\ln \relax (2)^{4}}}}{5}\) | \(19\) |
norman | \(\frac {\frac {x \ln \relax (2)^{3} {\mathrm e}^{\frac {256 x \,{\mathrm e}^{x}}{\ln \relax (2)^{4}}}}{5}-\frac {17 x^{2} \ln \relax (2)^{3} {\mathrm e}^{\frac {256 x \,{\mathrm e}^{x}}{\ln \relax (2)^{4}}}}{5}}{\ln \relax (2)^{3}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.04, size = 33, normalized size = 1.43 \begin {gather*} -\frac {{\left (17 \, x^{2} \log \relax (2)^{4} - x \log \relax (2)^{4}\right )} e^{\left (\frac {256 \, x e^{x}}{\log \relax (2)^{4}}\right )}}{5 \, \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 18, normalized size = 0.78 \begin {gather*} -\frac {x\,{\mathrm {e}}^{\frac {256\,x\,{\mathrm {e}}^x}{{\ln \relax (2)}^4}}\,\left (17\,x-1\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 20, normalized size = 0.87 \begin {gather*} \frac {\left (- 17 x^{2} + x\right ) e^{\frac {256 x e^{x}}{\log {\relax (2 )}^{4}}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________