3.17.54 4x+12x2+(4x+8x2)log(x)+3xlog2(x)+(1+x)log3(x)+(8x+4xlog(x)+3log2(x))log(3x)4xdx

Optimal. Leaf size=22 (x+log(x)(x+log2(x)4))(x+log(3x))

________________________________________________________________________________________

Rubi [B]  time = 0.29, antiderivative size = 70, normalized size of antiderivative = 3.18, number of steps used = 25, number of rules used = 11, integrand size = 63, number of rulesintegrand size = 0.175, Rules used = {12, 14, 2313, 2296, 2295, 2346, 2302, 30, 6742, 2361, 2366} x22+(x2+x)log(x)+16(3x+1)2x+14xlog3(x)+14log(3x)log3(x)xlog(x)+xlog(3x)log(x)+xlog(3x)

Antiderivative was successfully verified.

[In]

Int[(4*x + 12*x^2 + (4*x + 8*x^2)*Log[x] + 3*x*Log[x]^2 + (1 + x)*Log[x]^3 + (8*x + 4*x*Log[x] + 3*Log[x]^2)*L
og[3*x])/(4*x),x]

[Out]

-x - x^2/2 + (1 + 3*x)^2/6 - x*Log[x] + (x + x^2)*Log[x] + (x*Log[x]^3)/4 + x*Log[3*x] + x*Log[x]*Log[3*x] + (
Log[x]^3*Log[3*x])/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2313

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
 e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]

Rule 2346

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
 + e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]

Rule 2361

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
 x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]

Rule 2366

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] &&  !(EqQ[p, 1] && EqQ[a, 0] &&
 NeQ[d, 0])

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=144x+12x2+(4x+8x2)log(x)+3xlog2(x)+(1+x)log3(x)+(8x+4xlog(x)+3log2(x))log(3x)xdx=14(4x+12x2+4xlog(x)+8x2log(x)+3xlog2(x)+log3(x)+xlog3(x)x+(8x+4xlog(x)+3log2(x))log(3x)x)dx=144x+12x2+4xlog(x)+8x2log(x)+3xlog2(x)+log3(x)+xlog3(x)xdx+14(8x+4xlog(x)+3log2(x))log(3x)xdx=14(4(1+3x)+4(1+2x)log(x)+3log2(x)+(1+x)log3(x)x)dx+14(8log(3x)+4log(x)log(3x)+3log2(x)log(3x)x)dx=16(1+3x)2+14(1+x)log3(x)xdx+34log2(x)dx+34log2(x)log(3x)xdx+2log(3x)dx+(1+2x)log(x)dx+log(x)log(3x)dx=2x+16(1+3x)2+(x+x2)log(x)+34xlog2(x)+xlog(3x)+xlog(x)log(3x)+14log3(x)log(3x)+14log3(x)dx+14log3(x)xdx34log3(x)3xdx32log(x)dx(1+x)dx(1+log(x))dx=x2x22+16(1+3x)232xlog(x)+(x+x2)log(x)+34xlog2(x)+14xlog3(x)+xlog(3x)+xlog(x)log(3x)+14log3(x)log(3x)14log3(x)xdx+14Subst(x3dx,x,log(x))34log2(x)dxlog(x)dx=x2x22+16(1+3x)252xlog(x)+(x+x2)log(x)+14xlog3(x)+log4(x)16+xlog(3x)+xlog(x)log(3x)+14log3(x)log(3x)14Subst(x3dx,x,log(x))+32log(x)dx=xx22+16(1+3x)2xlog(x)+(x+x2)log(x)+14xlog3(x)+xlog(3x)+xlog(x)log(3x)+14log3(x)log(3x)

________________________________________________________________________________________

Mathematica [B]  time = 0.02, size = 70, normalized size = 3.18 x214xlog(81)+14xlog(6561)+xlog(x)+x2log(x)+14xlog(81)log(x)+xlog2(x)+14xlog3(x)+112log(27)log3(x)+log4(x)4

Antiderivative was successfully verified.

[In]

Integrate[(4*x + 12*x^2 + (4*x + 8*x^2)*Log[x] + 3*x*Log[x]^2 + (1 + x)*Log[x]^3 + (8*x + 4*x*Log[x] + 3*Log[x
]^2)*Log[3*x])/(4*x),x]

[Out]

x^2 - (x*Log[81])/4 + (x*Log[6561])/4 + x*Log[x] + x^2*Log[x] + (x*Log[81]*Log[x])/4 + x*Log[x]^2 + (x*Log[x]^
3)/4 + (Log[27]*Log[x]^3)/12 + Log[x]^4/4

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 42, normalized size = 1.91 14(x+log(3))log(x)3+14log(x)4+xlog(x)2+x2+xlog(3)+(x2+xlog(3)+x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="fricas")

[Out]

1/4*(x + log(3))*log(x)^3 + 1/4*log(x)^4 + x*log(x)^2 + x^2 + x*log(3) + (x^2 + x*log(3) + x)*log(x)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 43, normalized size = 1.95 14(x+log(3))log(x)3+14log(x)4+xlog(x)2+x2+xlog(3)+(x2+x(log(3)+1))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="giac")

[Out]

1/4*(x + log(3))*log(x)^3 + 1/4*log(x)^4 + x*log(x)^2 + x^2 + x*log(3) + (x^2 + x*(log(3) + 1))*log(x)

________________________________________________________________________________________

maple [B]  time = 0.08, size = 49, normalized size = 2.23




method result size



risch ln(x)44+(ln(3)+x)ln(x)34+xln(x)2+(4xln(3)+4x2+4x)ln(x)4+xln(3)+x2 49
default xln(x)34+xln(x)2+xln(x)+ln(x)44+ln(3)ln(x)34+ln(3)(xln(x)x)+x2ln(x)+x2+2xln(3) 58



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((3*ln(x)^2+4*x*ln(x)+8*x)*ln(3*x)+(x+1)*ln(x)^3+3*x*ln(x)^2+(8*x^2+4*x)*ln(x)+12*x^2+4*x)/x,x,method=
_RETURNVERBOSE)

[Out]

1/4*ln(x)^4+1/4*(ln(3)+x)*ln(x)^3+x*ln(x)^2+1/4*(4*x*ln(3)+4*x^2+4*x)*ln(x)+x*ln(3)+x^2

________________________________________________________________________________________

maxima [B]  time = 0.77, size = 108, normalized size = 4.91 116log(3x)414log(3x)3log(x)+38log(3x)2log(x)2+116log(x)4+x2log(x)+14(log(x)33log(x)2+6log(x)6)x+34(log(x)22log(x)+2)x+x2x(log(3)2)+2xlog(3x)+(xlog(3x)x)log(x)2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="maxima")

[Out]

1/16*log(3*x)^4 - 1/4*log(3*x)^3*log(x) + 3/8*log(3*x)^2*log(x)^2 + 1/16*log(x)^4 + x^2*log(x) + 1/4*(log(x)^3
 - 3*log(x)^2 + 6*log(x) - 6)*x + 3/4*(log(x)^2 - 2*log(x) + 2)*x + x^2 - x*(log(3) - 2) + 2*x*log(3*x) + (x*l
og(3*x) - x)*log(x) - 2*x

________________________________________________________________________________________

mupad [B]  time = 1.09, size = 21, normalized size = 0.95 (x+ln(3)+ln(x))(ln(x)3+4xln(x)+4x)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + (3*x*log(x)^2)/4 + (log(3*x)*(8*x + 3*log(x)^2 + 4*x*log(x)))/4 + (log(x)^3*(x + 1))/4 + (log(x)*(4*x
 + 8*x^2))/4 + 3*x^2)/x,x)

[Out]

((x + log(3) + log(x))*(4*x + log(x)^3 + 4*x*log(x)))/4

________________________________________________________________________________________

sympy [B]  time = 0.30, size = 48, normalized size = 2.18 x2+xlog(x)2+xlog(3)+(x4+log(3)4)log(x)3+(x2+x+xlog(3))log(x)+log(x)44

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((3*ln(x)**2+4*x*ln(x)+8*x)*ln(3*x)+(x+1)*ln(x)**3+3*x*ln(x)**2+(8*x**2+4*x)*ln(x)+12*x**2+4*x)/
x,x)

[Out]

x**2 + x*log(x)**2 + x*log(3) + (x/4 + log(3)/4)*log(x)**3 + (x**2 + x + x*log(3))*log(x) + log(x)**4/4

________________________________________________________________________________________