3.17.54
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 0.29, antiderivative size = 70, normalized size of antiderivative =
3.18, number of steps used = 25, number of rules used = 11, integrand size = 63,
= 0.175, Rules used = {12, 14, 2313, 2296, 2295, 2346, 2302, 30, 6742, 2361, 2366}
Antiderivative was successfully verified.
[In]
Int[(4*x + 12*x^2 + (4*x + 8*x^2)*Log[x] + 3*x*Log[x]^2 + (1 + x)*Log[x]^3 + (8*x + 4*x*Log[x] + 3*Log[x]^2)*L
og[3*x])/(4*x),x]
[Out]
-x - x^2/2 + (1 + 3*x)^2/6 - x*Log[x] + (x + x^2)*Log[x] + (x*Log[x]^3)/4 + x*Log[3*x] + x*Log[x]*Log[3*x] + (
Log[x]^3*Log[3*x])/4
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2313
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]
Rule 2346
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
+ e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]
Rule 2361
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]
Rule 2366
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && !(EqQ[p, 1] && EqQ[a, 0] &&
NeQ[d, 0])
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 70, normalized size = 3.18
Antiderivative was successfully verified.
[In]
Integrate[(4*x + 12*x^2 + (4*x + 8*x^2)*Log[x] + 3*x*Log[x]^2 + (1 + x)*Log[x]^3 + (8*x + 4*x*Log[x] + 3*Log[x
]^2)*Log[3*x])/(4*x),x]
[Out]
x^2 - (x*Log[81])/4 + (x*Log[6561])/4 + x*Log[x] + x^2*Log[x] + (x*Log[81]*Log[x])/4 + x*Log[x]^2 + (x*Log[x]^
3)/4 + (Log[27]*Log[x]^3)/12 + Log[x]^4/4
________________________________________________________________________________________
fricas [A] time = 0.69, size = 42, normalized size = 1.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="fricas")
[Out]
1/4*(x + log(3))*log(x)^3 + 1/4*log(x)^4 + x*log(x)^2 + x^2 + x*log(3) + (x^2 + x*log(3) + x)*log(x)
________________________________________________________________________________________
giac [A] time = 0.30, size = 43, normalized size = 1.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="giac")
[Out]
1/4*(x + log(3))*log(x)^3 + 1/4*log(x)^4 + x*log(x)^2 + x^2 + x*log(3) + (x^2 + x*(log(3) + 1))*log(x)
________________________________________________________________________________________
maple [B] time = 0.08, size = 49, normalized size = 2.23
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/4*((3*ln(x)^2+4*x*ln(x)+8*x)*ln(3*x)+(x+1)*ln(x)^3+3*x*ln(x)^2+(8*x^2+4*x)*ln(x)+12*x^2+4*x)/x,x,method=
_RETURNVERBOSE)
[Out]
1/4*ln(x)^4+1/4*(ln(3)+x)*ln(x)^3+x*ln(x)^2+1/4*(4*x*ln(3)+4*x^2+4*x)*ln(x)+x*ln(3)+x^2
________________________________________________________________________________________
maxima [B] time = 0.77, size = 108, normalized size = 4.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((3*log(x)^2+4*x*log(x)+8*x)*log(3*x)+(x+1)*log(x)^3+3*x*log(x)^2+(8*x^2+4*x)*log(x)+12*x^2+4*x)
/x,x, algorithm="maxima")
[Out]
1/16*log(3*x)^4 - 1/4*log(3*x)^3*log(x) + 3/8*log(3*x)^2*log(x)^2 + 1/16*log(x)^4 + x^2*log(x) + 1/4*(log(x)^3
- 3*log(x)^2 + 6*log(x) - 6)*x + 3/4*(log(x)^2 - 2*log(x) + 2)*x + x^2 - x*(log(3) - 2) + 2*x*log(3*x) + (x*l
og(3*x) - x)*log(x) - 2*x
________________________________________________________________________________________
mupad [B] time = 1.09, size = 21, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x + (3*x*log(x)^2)/4 + (log(3*x)*(8*x + 3*log(x)^2 + 4*x*log(x)))/4 + (log(x)^3*(x + 1))/4 + (log(x)*(4*x
+ 8*x^2))/4 + 3*x^2)/x,x)
[Out]
((x + log(3) + log(x))*(4*x + log(x)^3 + 4*x*log(x)))/4
________________________________________________________________________________________
sympy [B] time = 0.30, size = 48, normalized size = 2.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((3*ln(x)**2+4*x*ln(x)+8*x)*ln(3*x)+(x+1)*ln(x)**3+3*x*ln(x)**2+(8*x**2+4*x)*ln(x)+12*x**2+4*x)/
x,x)
[Out]
x**2 + x*log(x)**2 + x*log(3) + (x/4 + log(3)/4)*log(x)**3 + (x**2 + x + x*log(3))*log(x) + log(x)**4/4
________________________________________________________________________________________