Optimal. Leaf size=26 \[ \frac {25 (-1-x)}{2 \left (5+x^2+\frac {\log (x)}{5+x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125-3000 x+1275 x^2-600 x^3+500 x^4+125 x^5+50 x^6+25 x^7+\left (-125 x-50 x^2-75 x^3\right ) \log (x)}{1250 x+1000 x^3+300 x^5+40 x^7+2 x^9+\left (100 x+40 x^3+4 x^5\right ) \log (x)+2 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 \left (5-120 x+51 x^2-24 x^3+20 x^4+5 x^5+2 x^6+x^7-x \left (5+2 x+3 x^2\right ) \log (x)\right )}{2 x \left (\left (5+x^2\right )^2+\log (x)\right )^2} \, dx\\ &=\frac {25}{2} \int \frac {5-120 x+51 x^2-24 x^3+20 x^4+5 x^5+2 x^6+x^7-x \left (5+2 x+3 x^2\right ) \log (x)}{x \left (\left (5+x^2\right )^2+\log (x)\right )^2} \, dx\\ &=\frac {25}{2} \int \left (\frac {5+5 x+101 x^2+101 x^3+40 x^4+40 x^5+4 x^6+4 x^7}{x \left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {-5-2 x-3 x^2}{25+10 x^2+x^4+\log (x)}\right ) \, dx\\ &=\frac {25}{2} \int \frac {5+5 x+101 x^2+101 x^3+40 x^4+40 x^5+4 x^6+4 x^7}{x \left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+\frac {25}{2} \int \frac {-5-2 x-3 x^2}{25+10 x^2+x^4+\log (x)} \, dx\\ &=\frac {25}{2} \int \left (\frac {5}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {5}{x \left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {101 x}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {101 x^2}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {40 x^3}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {40 x^4}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {4 x^5}{\left (25+10 x^2+x^4+\log (x)\right )^2}+\frac {4 x^6}{\left (25+10 x^2+x^4+\log (x)\right )^2}\right ) \, dx+\frac {25}{2} \int \left (-\frac {5}{25+10 x^2+x^4+\log (x)}-\frac {2 x}{25+10 x^2+x^4+\log (x)}-\frac {3 x^2}{25+10 x^2+x^4+\log (x)}\right ) \, dx\\ &=-\left (25 \int \frac {x}{25+10 x^2+x^4+\log (x)} \, dx\right )-\frac {75}{2} \int \frac {x^2}{25+10 x^2+x^4+\log (x)} \, dx+50 \int \frac {x^5}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+50 \int \frac {x^6}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+\frac {125}{2} \int \frac {1}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+\frac {125}{2} \int \frac {1}{x \left (25+10 x^2+x^4+\log (x)\right )^2} \, dx-\frac {125}{2} \int \frac {1}{25+10 x^2+x^4+\log (x)} \, dx+500 \int \frac {x^3}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+500 \int \frac {x^4}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+\frac {2525}{2} \int \frac {x}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx+\frac {2525}{2} \int \frac {x^2}{\left (25+10 x^2+x^4+\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 27, normalized size = 1.04 \begin {gather*} -\frac {25 \left (5+5 x+x^2+x^3\right )}{2 \left (\left (5+x^2\right )^2+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 27, normalized size = 1.04 \begin {gather*} -\frac {25 \, {\left (x^{3} + x^{2} + 5 \, x + 5\right )}}{2 \, {\left (x^{4} + 10 \, x^{2} + \log \relax (x) + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 27, normalized size = 1.04 \begin {gather*} -\frac {25 \, {\left (x^{3} + x^{2} + 5 \, x + 5\right )}}{2 \, {\left (x^{4} + 10 \, x^{2} + \log \relax (x) + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 28, normalized size = 1.08
method | result | size |
risch | \(-\frac {25 \left (x^{3}+x^{2}+5 x +5\right )}{2 \left (x^{4}+10 x^{2}+\ln \relax (x )+25\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 27, normalized size = 1.04 \begin {gather*} -\frac {25 \, {\left (x^{3} + x^{2} + 5 \, x + 5\right )}}{2 \, {\left (x^{4} + 10 \, x^{2} + \log \relax (x) + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {1275\,x^2-3000\,x-600\,x^3+500\,x^4+125\,x^5+50\,x^6+25\,x^7-\ln \relax (x)\,\left (75\,x^3+50\,x^2+125\,x\right )+125}{1250\,x+2\,x\,{\ln \relax (x)}^2+1000\,x^3+300\,x^5+40\,x^7+2\,x^9+\ln \relax (x)\,\left (4\,x^5+40\,x^3+100\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 32, normalized size = 1.23 \begin {gather*} \frac {- 25 x^{3} - 25 x^{2} - 125 x - 125}{2 x^{4} + 20 x^{2} + 2 \log {\relax (x )} + 50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________