3.17.58 12+eex(220e2x+ex(202x))+ex(80+40x)36+e2ex+24x+4x2+eex(12+4x)dx

Optimal. Leaf size=22 20ex+2x6+eex+2x

________________________________________________________________________________________

Rubi [F]  time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 12+eex(220e2x+ex(202x))+ex(80+40x)36+e2ex+24x+4x2+eex(12+4x)dx

Verification is not applicable to the result.

[In]

Int[(12 + E^E^x*(2 - 20*E^(2*x) + E^x*(20 - 2*x)) + E^x*(80 + 40*x))/(36 + E^(2*E^x) + 24*x + 4*x^2 + E^E^x*(1
2 + 4*x)),x]

[Out]

-40*Defer[Int][E^x/(6 + E^E^x + 2*x)^2, x] - 20*Defer[Int][E^(E^x + 2*x)/(6 + E^E^x + 2*x)^2, x] - 4*Defer[Int
][x/(6 + E^E^x + 2*x)^2, x] + 12*Defer[Int][(E^x*x)/(6 + E^E^x + 2*x)^2, x] + 4*Defer[Int][(E^x*x^2)/(6 + E^E^
x + 2*x)^2, x] + 2*Defer[Int][(6 + E^E^x + 2*x)^(-1), x] + 20*Defer[Int][E^x/(6 + E^E^x + 2*x), x] - 2*Defer[I
nt][(E^x*x)/(6 + E^E^x + 2*x), x]

Rubi steps

integral=12+eex(220e2x+ex(202x))+ex(80+40x)(6+eex+2x)2dx=(20eex+2x(6+eex+2x)2+2(6+eex)(6+eex+2x)22ex(4010eex20x+eexx)(6+eex+2x)2)dx=26+eex(6+eex+2x)2dx2ex(4010eex20x+eexx)(6+eex+2x)2dx20eex+2x(6+eex+2x)2dx=2(2x(6+eex+2x)2+16+eex+2x)dx2(ex(10+x)6+eex+2x2ex(10+3x+x2)(6+eex+2x)2)dx20eex+2x(6+eex+2x)2dx=216+eex+2xdx2ex(10+x)6+eex+2xdx4x(6+eex+2x)2dx+4ex(10+3x+x2)(6+eex+2x)2dx20eex+2x(6+eex+2x)2dx=216+eex+2xdx2(10ex6+eex+2x+exx6+eex+2x)dx4x(6+eex+2x)2dx+4(10ex(6+eex+2x)2+3exx(6+eex+2x)2+exx2(6+eex+2x)2)dx20eex+2x(6+eex+2x)2dx=216+eex+2xdx2exx6+eex+2xdx4x(6+eex+2x)2dx+4exx2(6+eex+2x)2dx+12exx(6+eex+2x)2dx20eex+2x(6+eex+2x)2dx+20ex6+eex+2xdx40ex(6+eex+2x)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.41, size = 21, normalized size = 0.95 2(10ex+x)6+eex+2x

Antiderivative was successfully verified.

[In]

Integrate[(12 + E^E^x*(2 - 20*E^(2*x) + E^x*(20 - 2*x)) + E^x*(80 + 40*x))/(36 + E^(2*E^x) + 24*x + 4*x^2 + E^
E^x*(12 + 4*x)),x]

[Out]

(2*(10*E^x + x))/(6 + E^E^x + 2*x)

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 18, normalized size = 0.82 2(x+10ex)2x+e(ex)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*exp(x)^2+(-2*x+20)*exp(x)+2)*exp(exp(x))+(40*x+80)*exp(x)+12)/(exp(exp(x))^2+(4*x+12)*exp(exp(
x))+4*x^2+24*x+36),x, algorithm="fricas")

[Out]

2*(x + 10*e^x)/(2*x + e^(e^x) + 6)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 18, normalized size = 0.82 2(x+10ex)2x+e(ex)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*exp(x)^2+(-2*x+20)*exp(x)+2)*exp(exp(x))+(40*x+80)*exp(x)+12)/(exp(exp(x))^2+(4*x+12)*exp(exp(
x))+4*x^2+24*x+36),x, algorithm="giac")

[Out]

2*(x + 10*e^x)/(2*x + e^(e^x) + 6)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 19, normalized size = 0.86




method result size



risch 2x+20ex2x+eex+6 19
norman 2x+20ex2x+eex+6 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-20*exp(x)^2+(-2*x+20)*exp(x)+2)*exp(exp(x))+(40*x+80)*exp(x)+12)/(exp(exp(x))^2+(4*x+12)*exp(exp(x))+4*
x^2+24*x+36),x,method=_RETURNVERBOSE)

[Out]

2*(10*exp(x)+x)/(2*x+exp(exp(x))+6)

________________________________________________________________________________________

maxima [A]  time = 0.67, size = 18, normalized size = 0.82 2(x+10ex)2x+e(ex)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*exp(x)^2+(-2*x+20)*exp(x)+2)*exp(exp(x))+(40*x+80)*exp(x)+12)/(exp(exp(x))^2+(4*x+12)*exp(exp(
x))+4*x^2+24*x+36),x, algorithm="maxima")

[Out]

2*(x + 10*e^x)/(2*x + e^(e^x) + 6)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 ex(40x+80)eex(20e2x+ex(2x20)2)+1224x+e2ex+4x2+eex(4x+12)+36dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(40*x + 80) - exp(exp(x))*(20*exp(2*x) + exp(x)*(2*x - 20) - 2) + 12)/(24*x + exp(2*exp(x)) + 4*x^
2 + exp(exp(x))*(4*x + 12) + 36),x)

[Out]

int((exp(x)*(40*x + 80) - exp(exp(x))*(20*exp(2*x) + exp(x)*(2*x - 20) - 2) + 12)/(24*x + exp(2*exp(x)) + 4*x^
2 + exp(exp(x))*(4*x + 12) + 36), x)

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 17, normalized size = 0.77 2x+20ex2x+eex+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*exp(x)**2+(-2*x+20)*exp(x)+2)*exp(exp(x))+(40*x+80)*exp(x)+12)/(exp(exp(x))**2+(4*x+12)*exp(ex
p(x))+4*x**2+24*x+36),x)

[Out]

(2*x + 20*exp(x))/(2*x + exp(exp(x)) + 6)

________________________________________________________________________________________