3.17.59 e1x4log(3)+log(x+exlog(x2))(ex(164x)8x+6x2+2x3+2x4+16x3log(3)+32x2log2(3)+ex(2x3+16x2log(3)+32xlog2(3))log(x2)+(4x316x2log(3)+ex(4x216xlog(3))log(x2))log(x+exlog(x2))+(2x2+2exxlog(x2))log2(x+exlog(x2)))x4+8x3log(3)+16x2log2(3)+ex(x3+8x2log(3)+16xlog2(3))log(x2)+(2x38x2log(3)+ex(2x28xlog(3))log(x2))log(x+exlog(x2))+(x2+exxlog(x2))log2(x+exlog(x2))dx

Optimal. Leaf size=28 2e1x4log(3)+log(x+exlog(x2))(4+x)

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} $Aborted

Verification is not applicable to the result.

[In]

Int[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*x^3*Lo
g[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3] + E^x*
(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]]^2))/
(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*x^2*Lo
g[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [F]  time = 0.50, size = 0, normalized size = 0.00 e1x4log(3)+log(x+exlog(x2))(ex(164x)8x+6x2+2x3+2x4+16x3log(3)+32x2log2(3)+ex(2x3+16x2log(3)+32xlog2(3))log(x2)+(4x316x2log(3)+ex(4x216xlog(3))log(x2))log(x+exlog(x2))+(2x2+2exxlog(x2))log2(x+exlog(x2)))x4+8x3log(3)+16x2log2(3)+ex(x3+8x2log(3)+16xlog2(3))log(x2)+(2x38x2log(3)+ex(2x28xlog(3))log(x2))log(x+exlog(x2))+(x2+exxlog(x2))log2(x+exlog(x2))dx

Verification is not applicable to the result.

[In]

Integrate[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*
x^3*Log[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3]
+ E^x*(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2))/(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*
x^2*Log[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Lo
g[x^2]]^2),x]

[Out]

Integrate[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*
x^3*Log[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3]
+ E^x*(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2))/(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*
x^2*Log[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Lo
g[x^2]]^2), x]

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 28, normalized size = 1.00 2(x+4)e(1x+4log(3)log(exlog(x2)+x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="fricas")

[Out]

2*(x + 4)*e^(-1/(x + 4*log(3) - log(e^x*log(x^2) + x)))

________________________________________________________________________________________

giac [B]  time = 4.20, size = 108, normalized size = 3.86 2xe(xlog(exlog(x2)+x)4(xlog(3)+4log(3)2log(3)log(exlog(x2)+x))14log(3))+8e(xlog(exlog(x2)+x)4(xlog(3)+4log(3)2log(3)log(exlog(x2)+x))14log(3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="giac")

[Out]

2*x*e^(1/4*(x - log(e^x*log(x^2) + x))/(x*log(3) + 4*log(3)^2 - log(3)*log(e^x*log(x^2) + x)) - 1/4/log(3)) +
8*e^(1/4*(x - log(e^x*log(x^2) + x))/(x*log(3) + 4*log(3)^2 - log(3)*log(e^x*log(x^2) + x)) - 1/4/log(3))

________________________________________________________________________________________

maple [C]  time = 0.24, size = 59, normalized size = 2.11




method result size



risch (2x+8)e1ln(ex(2ln(x)iπcsgn(ix2)(csgn(ix2)+csgn(ix))22)+x)+4ln(3)+x 59



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x*exp(x)*ln(x^2)+2*x^2)*ln(exp(x)*ln(x^2)+x)^2+((-16*x*ln(3)-4*x^2)*exp(x)*ln(x^2)-16*x^2*ln(3)-4*x^3)
*ln(exp(x)*ln(x^2)+x)+(32*x*ln(3)^2+16*x^2*ln(3)+2*x^3)*exp(x)*ln(x^2)+(-16-4*x)*exp(x)+32*x^2*ln(3)^2+16*x^3*
ln(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(ln(exp(x)*ln(x^2)+x)-4*ln(3)-x))/((x*exp(x)*ln(x^2)+x^2)*ln(exp(x)*ln(x^2)
+x)^2+((-8*x*ln(3)-2*x^2)*exp(x)*ln(x^2)-8*x^2*ln(3)-2*x^3)*ln(exp(x)*ln(x^2)+x)+(16*x*ln(3)^2+8*x^2*ln(3)+x^3
)*exp(x)*ln(x^2)+16*x^2*ln(3)^2+8*x^3*ln(3)+x^4),x,method=_RETURNVERBOSE)

[Out]

(2*x+8)*exp(-1/(-ln(exp(x)*(2*ln(x)-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)+csgn(I*x))^2)+x)+4*ln(3)+x))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 2x4e(1x+4log(3)log(2exlog(x)+x))x2x2ex+16x3e(1x+4log(3)log(2exlog(x)+x))log(3)x2x2ex+32x2e(1x+4log(3)log(2exlog(x)+x))log(3)2x2x2ex+4x3e(x1x+4log(3)log(2exlog(x)+x))log(x)x2x2ex+32x2e(x1x+4log(3)log(2exlog(x)+x))log(3)log(x)x2x2ex+64xe(x1x+4log(3)log(2exlog(x)+x))log(3)2log(x)x2x2ex+2x3e(1x+4log(3)log(2exlog(x)+x))x2x2ex+6x2e(1x+4log(3)log(2exlog(x)+x))x2x2ex4xe(x1x+4log(3)log(2exlog(x)+x))x2x2ex8xe(1x+4log(3)log(2exlog(x)+x))x2x2ex16e(x1x+4log(3)log(2exlog(x)+x))x2x2ex+2(2(x+4log(3))log(2exlog(x)+x)log(2exlog(x)+x)2)e(1x+4log(3)log(2exlog(x)+x))x2+8xlog(3)+16log(3)22(x+4log(3))log(2exlog(x)+x)+log(2exlog(x)+x)2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="maxima")

[Out]

2*x^4*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) + 16*x^3*e^(-1/(x + 4*log(3) - log(2*e^x
*log(x) + x)))*log(3)/(x^2 - x - 2*e^x) + 32*x^2*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(3)^2/(x^2 -
 x - 2*e^x) + 4*x^3*e^(x - 1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(x)/(x^2 - x - 2*e^x) + 32*x^2*e^(x -
1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(3)*log(x)/(x^2 - x - 2*e^x) + 64*x*e^(x - 1/(x + 4*log(3) - log(
2*e^x*log(x) + x)))*log(3)^2*log(x)/(x^2 - x - 2*e^x) + 2*x^3*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x
^2 - x - 2*e^x) + 6*x^2*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) - 4*x*e^(x - 1/(x + 4*
log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) - 8*x*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 -
x - 2*e^x) - 16*e^(x - 1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) + 2*integrate(-(2*(x + 4*lo
g(3))*log(2*e^x*log(x) + x) - log(2*e^x*log(x) + x)^2)*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 + 8*
x*log(3) + 16*log(3)^2 - 2*(x + 4*log(3))*log(2*e^x*log(x) + x) + log(2*e^x*log(x) + x)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 e1x+4ln(3)ln(x+ln(x2)ex)(32x2ln(3)28x+ln(x+ln(x2)ex)2(2x2+2xln(x2)ex)ex(4x+16)+16x3ln(3)ln(x+ln(x2)ex)(16x2ln(3)+4x3+ln(x2)ex(4x2+16ln(3)x))+6x2+2x3+2x4+ln(x2)ex(2x3+16ln(3)x2+32ln(3)2x))16x2ln(3)2+8x3ln(3)+ln(x+ln(x2)ex)2(x2+xln(x2)ex)ln(x+ln(x2)ex)(8x2ln(3)+2x3+ln(x2)ex(2x2+8ln(3)x))+x4+ln(x2)ex(x3+8ln(3)x2+16ln(3)2x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-1/(x + 4*log(3) - log(x + log(x^2)*exp(x))))*(32*x^2*log(3)^2 - 8*x + log(x + log(x^2)*exp(x))^2*(2*
x^2 + 2*x*log(x^2)*exp(x)) - exp(x)*(4*x + 16) + 16*x^3*log(3) - log(x + log(x^2)*exp(x))*(16*x^2*log(3) + 4*x
^3 + log(x^2)*exp(x)*(16*x*log(3) + 4*x^2)) + 6*x^2 + 2*x^3 + 2*x^4 + log(x^2)*exp(x)*(32*x*log(3)^2 + 16*x^2*
log(3) + 2*x^3)))/(16*x^2*log(3)^2 + 8*x^3*log(3) + log(x + log(x^2)*exp(x))^2*(x^2 + x*log(x^2)*exp(x)) - log
(x + log(x^2)*exp(x))*(8*x^2*log(3) + 2*x^3 + log(x^2)*exp(x)*(8*x*log(3) + 2*x^2)) + x^4 + log(x^2)*exp(x)*(1
6*x*log(3)^2 + 8*x^2*log(3) + x^3)),x)

[Out]

int((exp(-1/(x + 4*log(3) - log(x + log(x^2)*exp(x))))*(32*x^2*log(3)^2 - 8*x + log(x + log(x^2)*exp(x))^2*(2*
x^2 + 2*x*log(x^2)*exp(x)) - exp(x)*(4*x + 16) + 16*x^3*log(3) - log(x + log(x^2)*exp(x))*(16*x^2*log(3) + 4*x
^3 + log(x^2)*exp(x)*(16*x*log(3) + 4*x^2)) + 6*x^2 + 2*x^3 + 2*x^4 + log(x^2)*exp(x)*(32*x*log(3)^2 + 16*x^2*
log(3) + 2*x^3)))/(16*x^2*log(3)^2 + 8*x^3*log(3) + log(x + log(x^2)*exp(x))^2*(x^2 + x*log(x^2)*exp(x)) - log
(x + log(x^2)*exp(x))*(8*x^2*log(3) + 2*x^3 + log(x^2)*exp(x)*(8*x*log(3) + 2*x^2)) + x^4 + log(x^2)*exp(x)*(1
6*x*log(3)^2 + 8*x^2*log(3) + x^3)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)*ln(x**2)+2*x**2)*ln(exp(x)*ln(x**2)+x)**2+((-16*x*ln(3)-4*x**2)*exp(x)*ln(x**2)-16*x**2
*ln(3)-4*x**3)*ln(exp(x)*ln(x**2)+x)+(32*x*ln(3)**2+16*x**2*ln(3)+2*x**3)*exp(x)*ln(x**2)+(-16-4*x)*exp(x)+32*
x**2*ln(3)**2+16*x**3*ln(3)+2*x**4+2*x**3+6*x**2-8*x)*exp(1/(ln(exp(x)*ln(x**2)+x)-4*ln(3)-x))/((x*exp(x)*ln(x
**2)+x**2)*ln(exp(x)*ln(x**2)+x)**2+((-8*x*ln(3)-2*x**2)*exp(x)*ln(x**2)-8*x**2*ln(3)-2*x**3)*ln(exp(x)*ln(x**
2)+x)+(16*x*ln(3)**2+8*x**2*ln(3)+x**3)*exp(x)*ln(x**2)+16*x**2*ln(3)**2+8*x**3*ln(3)+x**4),x)

[Out]

Timed out

________________________________________________________________________________________