3.17.59
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*x^3*Lo
g[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3] + E^x*
(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]]^2))/
(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*x^2*Lo
g[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2),x]
[Out]
$Aborted
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 0.50, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*
x^3*Log[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3]
+ E^x*(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2))/(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*
x^2*Log[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Lo
g[x^2]]^2),x]
[Out]
Integrate[(E^(-x - 4*Log[3] + Log[x + E^x*Log[x^2]])^(-1)*(E^x*(-16 - 4*x) - 8*x + 6*x^2 + 2*x^3 + 2*x^4 + 16*
x^3*Log[3] + 32*x^2*Log[3]^2 + E^x*(2*x^3 + 16*x^2*Log[3] + 32*x*Log[3]^2)*Log[x^2] + (-4*x^3 - 16*x^2*Log[3]
+ E^x*(-4*x^2 - 16*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (2*x^2 + 2*E^x*x*Log[x^2])*Log[x + E^x*Log[x^2]
]^2))/(x^4 + 8*x^3*Log[3] + 16*x^2*Log[3]^2 + E^x*(x^3 + 8*x^2*Log[3] + 16*x*Log[3]^2)*Log[x^2] + (-2*x^3 - 8*
x^2*Log[3] + E^x*(-2*x^2 - 8*x*Log[3])*Log[x^2])*Log[x + E^x*Log[x^2]] + (x^2 + E^x*x*Log[x^2])*Log[x + E^x*Lo
g[x^2]]^2), x]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="fricas")
[Out]
2*(x + 4)*e^(-1/(x + 4*log(3) - log(e^x*log(x^2) + x)))
________________________________________________________________________________________
giac [B] time = 4.20, size = 108, normalized size = 3.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="giac")
[Out]
2*x*e^(1/4*(x - log(e^x*log(x^2) + x))/(x*log(3) + 4*log(3)^2 - log(3)*log(e^x*log(x^2) + x)) - 1/4/log(3)) +
8*e^(1/4*(x - log(e^x*log(x^2) + x))/(x*log(3) + 4*log(3)^2 - log(3)*log(e^x*log(x^2) + x)) - 1/4/log(3))
________________________________________________________________________________________
maple [C] time = 0.24, size = 59, normalized size = 2.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x*exp(x)*ln(x^2)+2*x^2)*ln(exp(x)*ln(x^2)+x)^2+((-16*x*ln(3)-4*x^2)*exp(x)*ln(x^2)-16*x^2*ln(3)-4*x^3)
*ln(exp(x)*ln(x^2)+x)+(32*x*ln(3)^2+16*x^2*ln(3)+2*x^3)*exp(x)*ln(x^2)+(-16-4*x)*exp(x)+32*x^2*ln(3)^2+16*x^3*
ln(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(ln(exp(x)*ln(x^2)+x)-4*ln(3)-x))/((x*exp(x)*ln(x^2)+x^2)*ln(exp(x)*ln(x^2)
+x)^2+((-8*x*ln(3)-2*x^2)*exp(x)*ln(x^2)-8*x^2*ln(3)-2*x^3)*ln(exp(x)*ln(x^2)+x)+(16*x*ln(3)^2+8*x^2*ln(3)+x^3
)*exp(x)*ln(x^2)+16*x^2*ln(3)^2+8*x^3*ln(3)+x^4),x,method=_RETURNVERBOSE)
[Out]
(2*x+8)*exp(-1/(-ln(exp(x)*(2*ln(x)-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)+csgn(I*x))^2)+x)+4*ln(3)+x))
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)*log(x^2)+2*x^2)*log(exp(x)*log(x^2)+x)^2+((-16*x*log(3)-4*x^2)*exp(x)*log(x^2)-16*x^2*l
og(3)-4*x^3)*log(exp(x)*log(x^2)+x)+(32*x*log(3)^2+16*x^2*log(3)+2*x^3)*exp(x)*log(x^2)+(-16-4*x)*exp(x)+32*x^
2*log(3)^2+16*x^3*log(3)+2*x^4+2*x^3+6*x^2-8*x)*exp(1/(log(exp(x)*log(x^2)+x)-4*log(3)-x))/((x*exp(x)*log(x^2)
+x^2)*log(exp(x)*log(x^2)+x)^2+((-8*x*log(3)-2*x^2)*exp(x)*log(x^2)-8*x^2*log(3)-2*x^3)*log(exp(x)*log(x^2)+x)
+(16*x*log(3)^2+8*x^2*log(3)+x^3)*exp(x)*log(x^2)+16*x^2*log(3)^2+8*x^3*log(3)+x^4),x, algorithm="maxima")
[Out]
2*x^4*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) + 16*x^3*e^(-1/(x + 4*log(3) - log(2*e^x
*log(x) + x)))*log(3)/(x^2 - x - 2*e^x) + 32*x^2*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(3)^2/(x^2 -
x - 2*e^x) + 4*x^3*e^(x - 1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(x)/(x^2 - x - 2*e^x) + 32*x^2*e^(x -
1/(x + 4*log(3) - log(2*e^x*log(x) + x)))*log(3)*log(x)/(x^2 - x - 2*e^x) + 64*x*e^(x - 1/(x + 4*log(3) - log(
2*e^x*log(x) + x)))*log(3)^2*log(x)/(x^2 - x - 2*e^x) + 2*x^3*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x
^2 - x - 2*e^x) + 6*x^2*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) - 4*x*e^(x - 1/(x + 4*
log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) - 8*x*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 -
x - 2*e^x) - 16*e^(x - 1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 - x - 2*e^x) + 2*integrate(-(2*(x + 4*lo
g(3))*log(2*e^x*log(x) + x) - log(2*e^x*log(x) + x)^2)*e^(-1/(x + 4*log(3) - log(2*e^x*log(x) + x)))/(x^2 + 8*
x*log(3) + 16*log(3)^2 - 2*(x + 4*log(3))*log(2*e^x*log(x) + x) + log(2*e^x*log(x) + x)^2), x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-1/(x + 4*log(3) - log(x + log(x^2)*exp(x))))*(32*x^2*log(3)^2 - 8*x + log(x + log(x^2)*exp(x))^2*(2*
x^2 + 2*x*log(x^2)*exp(x)) - exp(x)*(4*x + 16) + 16*x^3*log(3) - log(x + log(x^2)*exp(x))*(16*x^2*log(3) + 4*x
^3 + log(x^2)*exp(x)*(16*x*log(3) + 4*x^2)) + 6*x^2 + 2*x^3 + 2*x^4 + log(x^2)*exp(x)*(32*x*log(3)^2 + 16*x^2*
log(3) + 2*x^3)))/(16*x^2*log(3)^2 + 8*x^3*log(3) + log(x + log(x^2)*exp(x))^2*(x^2 + x*log(x^2)*exp(x)) - log
(x + log(x^2)*exp(x))*(8*x^2*log(3) + 2*x^3 + log(x^2)*exp(x)*(8*x*log(3) + 2*x^2)) + x^4 + log(x^2)*exp(x)*(1
6*x*log(3)^2 + 8*x^2*log(3) + x^3)),x)
[Out]
int((exp(-1/(x + 4*log(3) - log(x + log(x^2)*exp(x))))*(32*x^2*log(3)^2 - 8*x + log(x + log(x^2)*exp(x))^2*(2*
x^2 + 2*x*log(x^2)*exp(x)) - exp(x)*(4*x + 16) + 16*x^3*log(3) - log(x + log(x^2)*exp(x))*(16*x^2*log(3) + 4*x
^3 + log(x^2)*exp(x)*(16*x*log(3) + 4*x^2)) + 6*x^2 + 2*x^3 + 2*x^4 + log(x^2)*exp(x)*(32*x*log(3)^2 + 16*x^2*
log(3) + 2*x^3)))/(16*x^2*log(3)^2 + 8*x^3*log(3) + log(x + log(x^2)*exp(x))^2*(x^2 + x*log(x^2)*exp(x)) - log
(x + log(x^2)*exp(x))*(8*x^2*log(3) + 2*x^3 + log(x^2)*exp(x)*(8*x*log(3) + 2*x^2)) + x^4 + log(x^2)*exp(x)*(1
6*x*log(3)^2 + 8*x^2*log(3) + x^3)), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)*ln(x**2)+2*x**2)*ln(exp(x)*ln(x**2)+x)**2+((-16*x*ln(3)-4*x**2)*exp(x)*ln(x**2)-16*x**2
*ln(3)-4*x**3)*ln(exp(x)*ln(x**2)+x)+(32*x*ln(3)**2+16*x**2*ln(3)+2*x**3)*exp(x)*ln(x**2)+(-16-4*x)*exp(x)+32*
x**2*ln(3)**2+16*x**3*ln(3)+2*x**4+2*x**3+6*x**2-8*x)*exp(1/(ln(exp(x)*ln(x**2)+x)-4*ln(3)-x))/((x*exp(x)*ln(x
**2)+x**2)*ln(exp(x)*ln(x**2)+x)**2+((-8*x*ln(3)-2*x**2)*exp(x)*ln(x**2)-8*x**2*ln(3)-2*x**3)*ln(exp(x)*ln(x**
2)+x)+(16*x*ln(3)**2+8*x**2*ln(3)+x**3)*exp(x)*ln(x**2)+16*x**2*ln(3)**2+8*x**3*ln(3)+x**4),x)
[Out]
Timed out
________________________________________________________________________________________