3.17.61 (8x+4x2)log(2+x)log(12(1+2x))+(2x4x2+(2+3x2x2)log(2+x))log2(12(1+2x))(2x23x3+2x4)log3(2+x)dx

Optimal. Leaf size=18 log2(12+x)xlog2(2+x)

________________________________________________________________________________________

Rubi [F]  time = 2.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (8x+4x2)log(2+x)log(12(1+2x))+(2x4x2+(2+3x2x2)log(2+x))log2(12(1+2x))(2x23x3+2x4)log3(2+x)dx

Verification is not applicable to the result.

[In]

Int[((-8*x + 4*x^2)*Log[-2 + x]*Log[(1 + 2*x)/2] + (-2*x - 4*x^2 + (2 + 3*x - 2*x^2)*Log[-2 + x])*Log[(1 + 2*x
)/2]^2)/((-2*x^2 - 3*x^3 + 2*x^4)*Log[-2 + x]^3),x]

[Out]

4*Defer[Int][Log[1/2 + x]/(x*Log[-2 + x]^2), x] - 8*Defer[Int][Log[1/2 + x]/((1 + 2*x)*Log[-2 + x]^2), x] - De
fer[Int][Log[1/2 + x]^2/((-2 + x)*Log[-2 + x]^3), x] + Defer[Int][Log[1/2 + x]^2/(x*Log[-2 + x]^3), x] - Defer
[Int][Log[1/2 + x]^2/(x^2*Log[-2 + x]^2), x]

Rubi steps

integral=(8x+4x2)log(2+x)log(12(1+2x))+(2x4x2+(2+3x2x2)log(2+x))log2(12(1+2x))x2(23x+2x2)log3(2+x)dx=(4log(12+x)x(1+2x)log2(2+x)(2x2log(2+x)+xlog(2+x))log2(12+x)(2+x)x2log3(2+x))dx=4log(12+x)x(1+2x)log2(2+x)dx(2x2log(2+x)+xlog(2+x))log2(12+x)(2+x)x2log3(2+x)dx=4(log(12+x)xlog2(2+x)2log(12+x)(1+2x)log2(2+x))dx((2x2log(2+x)+xlog(2+x))log2(12+x)4(2+x)log3(2+x)(2x2log(2+x)+xlog(2+x))log2(12+x)2x2log3(2+x)(2x2log(2+x)+xlog(2+x))log2(12+x)4xlog3(2+x))dx=(14(2x2log(2+x)+xlog(2+x))log2(12+x)(2+x)log3(2+x)dx)+14(2x2log(2+x)+xlog(2+x))log2(12+x)xlog3(2+x)dx+12(2x2log(2+x)+xlog(2+x))log2(12+x)x2log3(2+x)dx+4log(12+x)xlog2(2+x)dx8log(12+x)(1+2x)log2(2+x)dx=14(2log2(12+x)log3(2+x)+log2(12+x)log2(2+x)2log2(12+x)xlog2(2+x))dx14(2xlog2(12+x)(2+x)log3(2+x)2log2(12+x)(2+x)log2(2+x)+xlog2(12+x)(2+x)log2(2+x))dx+12(2log2(12+x)xlog3(2+x)2log2(12+x)x2log2(2+x)+log2(12+x)xlog2(2+x))dx+4log(12+x)xlog2(2+x)dx8log(12+x)(1+2x)log2(2+x)dx=14log2(12+x)log2(2+x)dx14xlog2(12+x)(2+x)log2(2+x)dx+12log2(12+x)log3(2+x)dx12xlog2(12+x)(2+x)log3(2+x)dx+12log2(12+x)(2+x)log2(2+x)dx+4log(12+x)xlog2(2+x)dx8log(12+x)(1+2x)log2(2+x)dx+log2(12+x)xlog3(2+x)dxlog2(12+x)x2log2(2+x)dx=14log2(12+x)log2(2+x)dx14(log2(12+x)log2(2+x)+2log2(12+x)(2+x)log2(2+x))dx+12log2(12+x)log3(2+x)dx+12log2(12+x)(2+x)log2(2+x)dx12(log2(12+x)log3(2+x)+2log2(12+x)(2+x)log3(2+x))dx+4log(12+x)xlog2(2+x)dx8log(12+x)(1+2x)log2(2+x)dx+log2(12+x)xlog3(2+x)dxlog2(12+x)x2log2(2+x)dx=4log(12+x)xlog2(2+x)dx8log(12+x)(1+2x)log2(2+x)dxlog2(12+x)(2+x)log3(2+x)dx+log2(12+x)xlog3(2+x)dxlog2(12+x)x2log2(2+x)dx

________________________________________________________________________________________

Mathematica [F]  time = 0.29, size = 0, normalized size = 0.00 (8x+4x2)log(2+x)log(12(1+2x))+(2x4x2+(2+3x2x2)log(2+x))log2(12(1+2x))(2x23x3+2x4)log3(2+x)dx

Verification is not applicable to the result.

[In]

Integrate[((-8*x + 4*x^2)*Log[-2 + x]*Log[(1 + 2*x)/2] + (-2*x - 4*x^2 + (2 + 3*x - 2*x^2)*Log[-2 + x])*Log[(1
 + 2*x)/2]^2)/((-2*x^2 - 3*x^3 + 2*x^4)*Log[-2 + x]^3),x]

[Out]

Integrate[((-8*x + 4*x^2)*Log[-2 + x]*Log[(1 + 2*x)/2] + (-2*x - 4*x^2 + (2 + 3*x - 2*x^2)*Log[-2 + x])*Log[(1
 + 2*x)/2]^2)/((-2*x^2 - 3*x^3 + 2*x^4)*Log[-2 + x]^3), x]

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 16, normalized size = 0.89 log(x+12)2xlog(x2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+3*x+2)*log(x-2)-4*x^2-2*x)*log(1/2+x)^2+(4*x^2-8*x)*log(x-2)*log(1/2+x))/(2*x^4-3*x^3-2*x^
2)/log(x-2)^3,x, algorithm="fricas")

[Out]

log(x + 1/2)^2/(x*log(x - 2)^2)

________________________________________________________________________________________

giac [B]  time = 0.34, size = 52, normalized size = 2.89 log(2)2xlog(x2)22log(2)log(2x+1)xlog(x2)2+log(2x+1)2xlog(x2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+3*x+2)*log(x-2)-4*x^2-2*x)*log(1/2+x)^2+(4*x^2-8*x)*log(x-2)*log(1/2+x))/(2*x^4-3*x^3-2*x^
2)/log(x-2)^3,x, algorithm="giac")

[Out]

log(2)^2/(x*log(x - 2)^2) - 2*log(2)*log(2*x + 1)/(x*log(x - 2)^2) + log(2*x + 1)^2/(x*log(x - 2)^2)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 17, normalized size = 0.94




method result size



risch ln(12+x)2xln(x2)2 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-2*x^2+3*x+2)*ln(x-2)-4*x^2-2*x)*ln(1/2+x)^2+(4*x^2-8*x)*ln(x-2)*ln(1/2+x))/(2*x^4-3*x^3-2*x^2)/ln(x-2)
^3,x,method=_RETURNVERBOSE)

[Out]

1/x*ln(1/2+x)^2/ln(x-2)^2

________________________________________________________________________________________

maxima [B]  time = 0.70, size = 33, normalized size = 1.83 log(2)22log(2)log(2x+1)+log(2x+1)2xlog(x2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+3*x+2)*log(x-2)-4*x^2-2*x)*log(1/2+x)^2+(4*x^2-8*x)*log(x-2)*log(1/2+x))/(2*x^4-3*x^3-2*x^
2)/log(x-2)^3,x, algorithm="maxima")

[Out]

(log(2)^2 - 2*log(2)*log(2*x + 1) + log(2*x + 1)^2)/(x*log(x - 2)^2)

________________________________________________________________________________________

mupad [B]  time = 1.35, size = 16, normalized size = 0.89 ln(x+12)2xln(x2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + 1/2)^2*(2*x - log(x - 2)*(3*x - 2*x^2 + 2) + 4*x^2) + log(x - 2)*log(x + 1/2)*(8*x - 4*x^2))/(log
(x - 2)^3*(2*x^2 + 3*x^3 - 2*x^4)),x)

[Out]

log(x + 1/2)^2/(x*log(x - 2)^2)

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 15, normalized size = 0.83 log(x+12)2xlog(x2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x**2+3*x+2)*ln(x-2)-4*x**2-2*x)*ln(1/2+x)**2+(4*x**2-8*x)*ln(x-2)*ln(1/2+x))/(2*x**4-3*x**3-2*
x**2)/ln(x-2)**3,x)

[Out]

log(x + 1/2)**2/(x*log(x - 2)**2)

________________________________________________________________________________________