3.17.62
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 109, normalized size of antiderivative = 6.06,
number of steps used = 2, number of rules used = 1, integrand size = 22, = 0.045, Rules used =
{1586}
Antiderivative was successfully verified.
[In]
Int[(-260 + 2376*(20 - 9*x)^22 + 117*x)/(-20 + 9*x),x]
[Out]
-4982833151999999999999999999987*x + 23543886643200000000000000000000*x^2 - 70631659929600000000000000000000*x
^3 + 150975173099520000000000000000000*x^4 - 244579780421222400000000000000000*x^5 + 3118392200370585600000000
00000000*x^6 - 320748912038117376000000000000000*x^7 + 270631894532161536000000000000000*x^8 - 189442326172513
075200000000000000*x^9 + 110823760810920148992000000000000*x^10 - 54404391670815345868800000000000*x^11 + 2244
1811564211330170880000000000*x^12 - 7768319387611614289920000000000*x^13 + 2247263822844788419584000000000*x^1
4 - 539343317482749220700160000000*x^15 + 106183215629416252825344000000*x^16 - 16864393070554346036966400000*
x^17 + 2108049133819293254620800000*x^18 - 199709917940775150437760000*x^19 + 13480419461002322654548800*x^20
- 577732262614385256623520*x^21 + 11817250826203334794572*x^22
Rule 1586
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.89
Antiderivative was successfully verified.
[In]
Integrate[(-260 + 2376*(20 - 9*x)^22 + 117*x)/(-20 + 9*x),x]
[Out]
-260/9 + 12*(20 - 9*x)^22 + 13*x
________________________________________________________________________________________
fricas [B] time = 0.64, size = 109, normalized size = 6.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2376*(-9*x+20)^22+117*x-260)/(9*x-20),x, algorithm="fricas")
[Out]
11817250826203334794572*x^22 - 577732262614385256623520*x^21 + 13480419461002322654548800*x^20 - 1997099179407
75150437760000*x^19 + 2108049133819293254620800000*x^18 - 16864393070554346036966400000*x^17 + 106183215629416
252825344000000*x^16 - 539343317482749220700160000000*x^15 + 2247263822844788419584000000000*x^14 - 7768319387
611614289920000000000*x^13 + 22441811564211330170880000000000*x^12 - 54404391670815345868800000000000*x^11 + 1
10823760810920148992000000000000*x^10 - 189442326172513075200000000000000*x^9 + 270631894532161536000000000000
000*x^8 - 320748912038117376000000000000000*x^7 + 311839220037058560000000000000000*x^6 - 24457978042122240000
0000000000000*x^5 + 150975173099520000000000000000000*x^4 - 70631659929600000000000000000000*x^3 + 23543886643
200000000000000000000*x^2 - 4982833151999999999999999999987*x
________________________________________________________________________________________
giac [B] time = 0.17, size = 109, normalized size = 6.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2376*(-9*x+20)^22+117*x-260)/(9*x-20),x, algorithm="giac")
[Out]
11817250826203334794572*x^22 - 577732262614385256623520*x^21 + 13480419461002322654548800*x^20 - 1997099179407
75150437760000*x^19 + 2108049133819293254620800000*x^18 - 16864393070554346036966400000*x^17 + 106183215629416
252825344000000*x^16 - 539343317482749220700160000000*x^15 + 2247263822844788419584000000000*x^14 - 7768319387
611614289920000000000*x^13 + 22441811564211330170880000000000*x^12 - 54404391670815345868800000000000*x^11 + 1
10823760810920148992000000000000*x^10 - 189442326172513075200000000000000*x^9 + 270631894532161536000000000000
000*x^8 - 320748912038117376000000000000000*x^7 + 311839220037058560000000000000000*x^6 - 24457978042122240000
0000000000000*x^5 + 150975173099520000000000000000000*x^4 - 70631659929600000000000000000000*x^3 + 23543886643
200000000000000000000*x^2 - 4982833151999999999999999999987*x
________________________________________________________________________________________
maple [B] time = 0.47, size = 108, normalized size = 6.00
|
|
|
method |
result |
size |
|
|
|
gosper |
|
|
default |
|
|
norman |
|
|
risch |
|
|
meijerg |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2376*(-9*x+20)^22+117*x-260)/(9*x-20),x,method=_RETURNVERBOSE)
[Out]
x*(11817250826203334794572*x^21-577732262614385256623520*x^20+13480419461002322654548800*x^19-1997099179407751
50437760000*x^18+2108049133819293254620800000*x^17-16864393070554346036966400000*x^16+106183215629416252825344
000000*x^15-539343317482749220700160000000*x^14+2247263822844788419584000000000*x^13-7768319387611614289920000
000000*x^12+22441811564211330170880000000000*x^11-54404391670815345868800000000000*x^10+1108237608109201489920
00000000000*x^9-189442326172513075200000000000000*x^8+270631894532161536000000000000000*x^7-320748912038117376
000000000000000*x^6+311839220037058560000000000000000*x^5-244579780421222400000000000000000*x^4+15097517309952
0000000000000000000*x^3-70631659929600000000000000000000*x^2+23543886643200000000000000000000*x-49828331519999
99999999999999987)
________________________________________________________________________________________
maxima [B] time = 0.42, size = 109, normalized size = 6.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2376*(-9*x+20)^22+117*x-260)/(9*x-20),x, algorithm="maxima")
[Out]
11817250826203334794572*x^22 - 577732262614385256623520*x^21 + 13480419461002322654548800*x^20 - 1997099179407
75150437760000*x^19 + 2108049133819293254620800000*x^18 - 16864393070554346036966400000*x^17 + 106183215629416
252825344000000*x^16 - 539343317482749220700160000000*x^15 + 2247263822844788419584000000000*x^14 - 7768319387
611614289920000000000*x^13 + 22441811564211330170880000000000*x^12 - 54404391670815345868800000000000*x^11 + 1
10823760810920148992000000000000*x^10 - 189442326172513075200000000000000*x^9 + 270631894532161536000000000000
000*x^8 - 320748912038117376000000000000000*x^7 + 311839220037058560000000000000000*x^6 - 24457978042122240000
0000000000000*x^5 + 150975173099520000000000000000000*x^4 - 70631659929600000000000000000000*x^3 + 23543886643
200000000000000000000*x^2 - 4982833151999999999999999999987*x
________________________________________________________________________________________
mupad [B] time = 1.46, size = 109, normalized size = 6.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((117*x + 2376*(9*x - 20)^22 - 260)/(9*x - 20),x)
[Out]
23543886643200000000000000000000*x^2 - 4982833151999999999999999999987*x - 70631659929600000000000000000000*x^
3 + 150975173099520000000000000000000*x^4 - 244579780421222400000000000000000*x^5 + 31183922003705856000000000
0000000*x^6 - 320748912038117376000000000000000*x^7 + 270631894532161536000000000000000*x^8 - 1894423261725130
75200000000000000*x^9 + 110823760810920148992000000000000*x^10 - 54404391670815345868800000000000*x^11 + 22441
811564211330170880000000000*x^12 - 7768319387611614289920000000000*x^13 + 2247263822844788419584000000000*x^14
- 539343317482749220700160000000*x^15 + 106183215629416252825344000000*x^16 - 16864393070554346036966400000*x
^17 + 2108049133819293254620800000*x^18 - 199709917940775150437760000*x^19 + 13480419461002322654548800*x^20 -
577732262614385256623520*x^21 + 11817250826203334794572*x^22
________________________________________________________________________________________
sympy [B] time = 0.11, size = 109, normalized size = 6.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2376*(-9*x+20)**22+117*x-260)/(9*x-20),x)
[Out]
11817250826203334794572*x**22 - 577732262614385256623520*x**21 + 13480419461002322654548800*x**20 - 1997099179
40775150437760000*x**19 + 2108049133819293254620800000*x**18 - 16864393070554346036966400000*x**17 + 106183215
629416252825344000000*x**16 - 539343317482749220700160000000*x**15 + 2247263822844788419584000000000*x**14 - 7
768319387611614289920000000000*x**13 + 22441811564211330170880000000000*x**12 - 544043916708153458688000000000
00*x**11 + 110823760810920148992000000000000*x**10 - 189442326172513075200000000000000*x**9 + 2706318945321615
36000000000000000*x**8 - 320748912038117376000000000000000*x**7 + 311839220037058560000000000000000*x**6 - 244
579780421222400000000000000000*x**5 + 150975173099520000000000000000000*x**4 - 7063165992960000000000000000000
0*x**3 + 23543886643200000000000000000000*x**2 - 4982833151999999999999999999987*x
________________________________________________________________________________________