3.17.66
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 39, normalized size of antiderivative = 1.44,
number of steps used = 4, number of rules used = 3, integrand size = 67, = 0.045, Rules used =
{1594, 27, 1620}
Antiderivative was successfully verified.
[In]
Int[(135*x + 40*x^6 + 15*x^7 + E^4*(40*x^4 + 15*x^5) + E^2*(90 + 80*x^5 + 30*x^6))/(E^4*x^3 + 2*E^2*x^4 + x^5)
,x]
[Out]
-45/(E^2*x^2) + 45/(E^4*x) + 20*x^2 + 5*x^3 - 45/(E^4*(E^2 + x))
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 1620
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.19
Antiderivative was successfully verified.
[In]
Integrate[(135*x + 40*x^6 + 15*x^7 + E^4*(40*x^4 + 15*x^5) + E^2*(90 + 80*x^5 + 30*x^6))/(E^4*x^3 + 2*E^2*x^4
+ x^5),x]
[Out]
(5*(-9 + 4*x^5 + x^6 + E^2*x^4*(4 + x)))/(x^2*(E^2 + x))
________________________________________________________________________________________
fricas [A] time = 0.78, size = 36, normalized size = 1.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="fricas")
[Out]
5*(x^6 + 4*x^5 + (x^5 + 4*x^4)*e^2 - 9)/(x^3 + x^2*e^2)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="giac")
[Out]
Exception raised: NotImplementedError >> Unable to parse Giac output: 5*(sageVARx^3+4*sageVARx^2+((-27*exp(4)^
2+36*exp(4)*exp(2)^2)*sageVARx-9*exp(4)^2*exp(2))/exp(4)^3/sageVARx^2+(36*exp(4)*exp(2)-36*exp(2)^3)/exp(4)^3*
ln(sageVARx^2+2*sageV
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.85
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
gosper |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+x^5),x
,method=_RETURNVERBOSE)
[Out]
5*x^3+20*x^2-45/x^2/(x+exp(2))
________________________________________________________________________________________
maxima [A] time = 0.43, size = 25, normalized size = 0.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="maxima")
[Out]
5*x^3 + 20*x^2 - 45/(x^3 + x^2*e^2)
________________________________________________________________________________________
mupad [B] time = 1.14, size = 47, normalized size = 1.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((135*x + exp(4)*(40*x^4 + 15*x^5) + exp(2)*(80*x^5 + 30*x^6 + 90) + 40*x^6 + 15*x^7)/(2*x^4*exp(2) + x^3*e
xp(4) + x^5),x)
[Out]
20*x^2 - x*(80*exp(2) + 15*exp(4) - 5*exp(2)*(3*exp(2) + 16)) - 45/(x^2*exp(2) + x^3) + 5*x^3
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x**5+40*x**4)*exp(2)**2+(30*x**6+80*x**5+90)*exp(2)+15*x**7+40*x**6+135*x)/(x**3*exp(2)**2+2*x*
*4*exp(2)+x**5),x)
[Out]
5*x**3 + 20*x**2 - 45/(x**3 + x**2*exp(2))
________________________________________________________________________________________