3.17.66 135x+40x6+15x7+e4(40x4+15x5)+e2(90+80x5+30x6)e4x3+2e2x4+x5dx

Optimal. Leaf size=27 5x2(4+x)4(5+454x2(e2+x))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 4, number of rules used = 3, integrand size = 67, number of rulesintegrand size = 0.045, Rules used = {1594, 27, 1620} 5x3+20x245e2x245e4(x+e2)+45e4x

Antiderivative was successfully verified.

[In]

Int[(135*x + 40*x^6 + 15*x^7 + E^4*(40*x^4 + 15*x^5) + E^2*(90 + 80*x^5 + 30*x^6))/(E^4*x^3 + 2*E^2*x^4 + x^5)
,x]

[Out]

-45/(E^2*x^2) + 45/(E^4*x) + 20*x^2 + 5*x^3 - 45/(E^4*(E^2 + x))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rubi steps

integral=135x+40x6+15x7+e4(40x4+15x5)+e2(90+80x5+30x6)x3(e4+2e2x+x2)dx=135x+40x6+15x7+e4(40x4+15x5)+e2(90+80x5+30x6)x3(e2+x)2dx=(90e2x345e4x2+40x+15x2+45e4(e2+x)2)dx=45e2x2+45e4x+20x2+5x345e4(e2+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 32, normalized size = 1.19 5(9+4x5+x6+e2x4(4+x))x2(e2+x)

Antiderivative was successfully verified.

[In]

Integrate[(135*x + 40*x^6 + 15*x^7 + E^4*(40*x^4 + 15*x^5) + E^2*(90 + 80*x^5 + 30*x^6))/(E^4*x^3 + 2*E^2*x^4
+ x^5),x]

[Out]

(5*(-9 + 4*x^5 + x^6 + E^2*x^4*(4 + x)))/(x^2*(E^2 + x))

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 36, normalized size = 1.33 5(x6+4x5+(x5+4x4)e29)x3+x2e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="fricas")

[Out]

5*(x^6 + 4*x^5 + (x^5 + 4*x^4)*e^2 - 9)/(x^3 + x^2*e^2)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: NotImplementedError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: 5*(sageVARx^3+4*sageVARx^2+((-27*exp(4)^
2+36*exp(4)*exp(2)^2)*sageVARx-9*exp(4)^2*exp(2))/exp(4)^3/sageVARx^2+(36*exp(4)*exp(2)-36*exp(2)^3)/exp(4)^3*
ln(sageVARx^2+2*sageV

________________________________________________________________________________________

maple [A]  time = 0.08, size = 23, normalized size = 0.85




method result size



risch 5x3+20x245x2(x+e2) 23
gosper 5e2x5+5x6+20x4e2+20x545x2(x+e2) 35
norman 45+(20+5e2)x5+5x6+20x4e2x2(x+e2) 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+x^5),x
,method=_RETURNVERBOSE)

[Out]

5*x^3+20*x^2-45/x^2/(x+exp(2))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 25, normalized size = 0.93 5x3+20x245x3+x2e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+40*x^4)*exp(2)^2+(30*x^6+80*x^5+90)*exp(2)+15*x^7+40*x^6+135*x)/(x^3*exp(2)^2+2*x^4*exp(2)+
x^5),x, algorithm="maxima")

[Out]

5*x^3 + 20*x^2 - 45/(x^3 + x^2*e^2)

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 47, normalized size = 1.74 20x2x(80e2+15e45e2(3e2+16))45x3+e2x2+5x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((135*x + exp(4)*(40*x^4 + 15*x^5) + exp(2)*(80*x^5 + 30*x^6 + 90) + 40*x^6 + 15*x^7)/(2*x^4*exp(2) + x^3*e
xp(4) + x^5),x)

[Out]

20*x^2 - x*(80*exp(2) + 15*exp(4) - 5*exp(2)*(3*exp(2) + 16)) - 45/(x^2*exp(2) + x^3) + 5*x^3

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 20, normalized size = 0.74 5x3+20x245x3+x2e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x**5+40*x**4)*exp(2)**2+(30*x**6+80*x**5+90)*exp(2)+15*x**7+40*x**6+135*x)/(x**3*exp(2)**2+2*x*
*4*exp(2)+x**5),x)

[Out]

5*x**3 + 20*x**2 - 45/(x**3 + x**2*exp(2))

________________________________________________________________________________________