3.17.67 6448x16x232xlog(x)64x+48x212x3+x4dx

Optimal. Leaf size=21 10+x2(x+log(x))(xx24)2

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 33, normalized size of antiderivative = 1.57, number of steps used = 10, number of rules used = 6, integrand size = 35, number of rulesintegrand size = 0.171, Rules used = {6688, 12, 6742, 44, 37, 2319} 2x2(4x)2+32(4x)2+16log(x)(4x)2

Antiderivative was successfully verified.

[In]

Int[(-64 - 48*x - 16*x^2 - 32*x*Log[x])/(-64*x + 48*x^2 - 12*x^3 + x^4),x]

[Out]

32/(4 - x)^2 + (2*x^2)/(4 - x)^2 + (16*Log[x])/(4 - x)^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 2319

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1
)*(a + b*Log[c*x^n])^p)/(e*(q + 1)), x] - Dist[(b*n*p)/(e*(q + 1)), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=16(4+3x+x2+2xlog(x))(4x)3xdx=164+3x+x2+2xlog(x)(4x)3xdx=16(3(4+x)34(4+x)3xx(4+x)32log(x)(4+x)3)dx=24(4x)216x(4+x)3dx32log(x)(4+x)3dx641(4+x)3xdx=24(4x)2+2x2(4x)2+16log(x)(4x)2161(4+x)2xdx64(14(4+x)3116(4+x)2+164(4+x)164x)dx=32(4x)2+44x+2x2(4x)2log(4x)+log(x)+16log(x)(4x)216(14(4+x)2116(4+x)+116x)dx=32(4x)2+2x2(4x)2+16log(x)(4x)2

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 11, normalized size = 0.52 16(x+log(x))(4+x)2

Antiderivative was successfully verified.

[In]

Integrate[(-64 - 48*x - 16*x^2 - 32*x*Log[x])/(-64*x + 48*x^2 - 12*x^3 + x^4),x]

[Out]

(16*(x + Log[x]))/(-4 + x)^2

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 16, normalized size = 0.76 16(x+log(x))x28x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-32*x*log(x)-16*x^2-48*x-64)/(x^4-12*x^3+48*x^2-64*x),x, algorithm="fricas")

[Out]

16*(x + log(x))/(x^2 - 8*x + 16)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 28, normalized size = 1.33 16xx28x+16+16log(x)x28x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-32*x*log(x)-16*x^2-48*x-64)/(x^4-12*x^3+48*x^2-64*x),x, algorithm="giac")

[Out]

16*x/(x^2 - 8*x + 16) + 16*log(x)/(x^2 - 8*x + 16)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 15, normalized size = 0.71




method result size



norman 16x+16ln(x)(x4)2 15
risch 16ln(x)x28x+16+16xx28x+16 29
default 16x4ln(x)x(8+x)(x4)2+64(x4)2+ln(x) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-32*x*ln(x)-16*x^2-48*x-64)/(x^4-12*x^3+48*x^2-64*x),x,method=_RETURNVERBOSE)

[Out]

(16*x+16*ln(x))/(x-4)^2

________________________________________________________________________________________

maxima [B]  time = 0.77, size = 64, normalized size = 3.05 16(x2)x28x+164(x6)x28x+16+16log(x)x28x+16+24x28x+16+4x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-32*x*log(x)-16*x^2-48*x-64)/(x^4-12*x^3+48*x^2-64*x),x, algorithm="maxima")

[Out]

16*(x - 2)/(x^2 - 8*x + 16) - 4*(x - 6)/(x^2 - 8*x + 16) + 16*log(x)/(x^2 - 8*x + 16) + 24/(x^2 - 8*x + 16) +
4/(x - 4)

________________________________________________________________________________________

mupad [B]  time = 1.13, size = 11, normalized size = 0.52 16(x+ln(x))(x4)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((48*x + 32*x*log(x) + 16*x^2 + 64)/(64*x - 48*x^2 + 12*x^3 - x^4),x)

[Out]

(16*(x + log(x)))/(x - 4)^2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 24, normalized size = 1.14 16xx28x+16+16log(x)x28x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-32*x*ln(x)-16*x**2-48*x-64)/(x**4-12*x**3+48*x**2-64*x),x)

[Out]

16*x/(x**2 - 8*x + 16) + 16*log(x)/(x**2 - 8*x + 16)

________________________________________________________________________________________