Optimal. Leaf size=22 \[ x \left (5-\frac {9}{\log \left (\frac {1}{4} \left (6+e^4-\log (2)\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {8} \begin {gather*} x \left (5-\frac {9}{\log \left (\frac {1}{4} \left (6+e^4-\log (2)\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x \left (5-\frac {9}{\log \left (\frac {1}{4} \left (6+e^4-\log (2)\right )\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 23, normalized size = 1.05 \begin {gather*} 5 x-\frac {9 x}{\log \left (\frac {1}{4} \left (6+e^4-\log (2)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 32, normalized size = 1.45 \begin {gather*} \frac {5 \, x \log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right ) - 9 \, x}{\log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 30, normalized size = 1.36 \begin {gather*} \frac {x {\left (5 \, \log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right ) - 9\right )}}{\log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 31, normalized size = 1.41
method | result | size |
default | \(\frac {\left (5 \ln \left (-\frac {\ln \relax (2)}{4}+\frac {{\mathrm e}^{4}}{4}+\frac {3}{2}\right )-9\right ) x}{\ln \left (-\frac {\ln \relax (2)}{4}+\frac {{\mathrm e}^{4}}{4}+\frac {3}{2}\right )}\) | \(31\) |
norman | \(\frac {\left (10 \ln \relax (2)-5 \ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )+9\right ) x}{2 \ln \relax (2)-\ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )}\) | \(38\) |
risch | \(-\frac {10 x \ln \relax (2)}{-2 \ln \relax (2)+\ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )}+\frac {5 x \ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )}{-2 \ln \relax (2)+\ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )}-\frac {9 x}{-2 \ln \relax (2)+\ln \left (-\ln \relax (2)+{\mathrm e}^{4}+6\right )}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 30, normalized size = 1.36 \begin {gather*} \frac {x {\left (5 \, \log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right ) - 9\right )}}{\log \left (\frac {1}{4} \, e^{4} - \frac {1}{4} \, \log \relax (2) + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 30, normalized size = 1.36 \begin {gather*} \frac {x\,\left (5\,\ln \left (\frac {{\mathrm {e}}^4}{4}-\frac {\ln \relax (2)}{4}+\frac {3}{2}\right )-9\right )}{\ln \left (\frac {{\mathrm {e}}^4}{4}-\frac {\ln \relax (2)}{4}+\frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 34, normalized size = 1.55 \begin {gather*} \frac {x \left (-9 + 5 \log {\left (- \frac {\log {\relax (2 )}}{4} + \frac {3}{2} + \frac {e^{4}}{4} \right )}\right )}{\log {\left (- \frac {\log {\relax (2 )}}{4} + \frac {3}{2} + \frac {e^{4}}{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________