3.17.73 9+5log(14(6+e4log(2)))log(14(6+e4log(2)))dx

Optimal. Leaf size=22 x(59log(14(6+e4log(2))))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 35, number of rulesintegrand size = 0.029, Rules used = {8} x(59log(14(6+e4log(2))))

Antiderivative was successfully verified.

[In]

Int[(-9 + 5*Log[(6 + E^4 - Log[2])/4])/Log[(6 + E^4 - Log[2])/4],x]

[Out]

x*(5 - 9/Log[(6 + E^4 - Log[2])/4])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

integral=x(59log(14(6+e4log(2))))

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 23, normalized size = 1.05 5x9xlog(14(6+e4log(2)))

Antiderivative was successfully verified.

[In]

Integrate[(-9 + 5*Log[(6 + E^4 - Log[2])/4])/Log[(6 + E^4 - Log[2])/4],x]

[Out]

5*x - (9*x)/Log[(6 + E^4 - Log[2])/4]

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 32, normalized size = 1.45 5xlog(14e414log(2)+32)9xlog(14e414log(2)+32)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*log(-1/4*log(2)+1/4*exp(4)+3/2)-9)/log(-1/4*log(2)+1/4*exp(4)+3/2),x, algorithm="fricas")

[Out]

(5*x*log(1/4*e^4 - 1/4*log(2) + 3/2) - 9*x)/log(1/4*e^4 - 1/4*log(2) + 3/2)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 30, normalized size = 1.36 x(5log(14e414log(2)+32)9)log(14e414log(2)+32)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*log(-1/4*log(2)+1/4*exp(4)+3/2)-9)/log(-1/4*log(2)+1/4*exp(4)+3/2),x, algorithm="giac")

[Out]

x*(5*log(1/4*e^4 - 1/4*log(2) + 3/2) - 9)/log(1/4*e^4 - 1/4*log(2) + 3/2)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 31, normalized size = 1.41




method result size



default (5ln(ln(2)4+e44+32)9)xln(ln(2)4+e44+32) 31
norman (10ln(2)5ln(ln(2)+e4+6)+9)x2ln(2)ln(ln(2)+e4+6) 38
risch 10xln(2)2ln(2)+ln(ln(2)+e4+6)+5xln(ln(2)+e4+6)2ln(2)+ln(ln(2)+e4+6)9x2ln(2)+ln(ln(2)+e4+6) 70



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*ln(-1/4*ln(2)+1/4*exp(4)+3/2)-9)/ln(-1/4*ln(2)+1/4*exp(4)+3/2),x,method=_RETURNVERBOSE)

[Out]

(5*ln(-1/4*ln(2)+1/4*exp(4)+3/2)-9)/ln(-1/4*ln(2)+1/4*exp(4)+3/2)*x

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 30, normalized size = 1.36 x(5log(14e414log(2)+32)9)log(14e414log(2)+32)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*log(-1/4*log(2)+1/4*exp(4)+3/2)-9)/log(-1/4*log(2)+1/4*exp(4)+3/2),x, algorithm="maxima")

[Out]

x*(5*log(1/4*e^4 - 1/4*log(2) + 3/2) - 9)/log(1/4*e^4 - 1/4*log(2) + 3/2)

________________________________________________________________________________________

mupad [B]  time = 0.00, size = 30, normalized size = 1.36 x(5ln(e44ln(2)4+32)9)ln(e44ln(2)4+32)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*log(exp(4)/4 - log(2)/4 + 3/2) - 9)/log(exp(4)/4 - log(2)/4 + 3/2),x)

[Out]

(x*(5*log(exp(4)/4 - log(2)/4 + 3/2) - 9))/log(exp(4)/4 - log(2)/4 + 3/2)

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 34, normalized size = 1.55 x(9+5log(log(2)4+32+e44))log(log(2)4+32+e44)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*ln(-1/4*ln(2)+1/4*exp(4)+3/2)-9)/ln(-1/4*ln(2)+1/4*exp(4)+3/2),x)

[Out]

x*(-9 + 5*log(-log(2)/4 + 3/2 + exp(4)/4))/log(-log(2)/4 + 3/2 + exp(4)/4)

________________________________________________________________________________________