Optimal. Leaf size=40 \[ 3 \left (1+\frac {1}{5} \left (\frac {5}{\log \left (x^2\right )}+\frac {x}{-4-x+\frac {x}{\log \left (\frac {1+x}{3}\right )}}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 50.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {300 x^3+300 x^4+\left (-3600 x^2-4500 x^3-900 x^4\right ) \log \left (\frac {1+x}{3}\right )+\left (14400 x+21600 x^2+8100 x^3+900 x^4\right ) \log ^2\left (\frac {1+x}{3}\right )+\left (-19200-33600 x-18000 x^2-3900 x^3-300 x^4\right ) \log ^3\left (\frac {1+x}{3}\right )+\log ^2\left (x^2\right ) \left (-30 x^4+\left (120 x^3+30 x^4\right ) \log \left (\frac {1+x}{3}\right )+\left (120 x^2+120 x^3\right ) \log ^2\left (\frac {1+x}{3}\right )+\left (-480 x-600 x^2-120 x^3\right ) \log ^3\left (\frac {1+x}{3}\right )\right )+\log ^3\left (x^2\right ) \left (-6 x^4 \log \left (\frac {1+x}{3}\right )+\left (24 x^2+24 x^3\right ) \log ^3\left (\frac {1+x}{3}\right )\right )+\log \left (x^2\right ) \left (\left (60 x^3+60 x^4\right ) \log \left (\frac {1+x}{3}\right )+\left (-480 x^2-600 x^3-120 x^4\right ) \log ^2\left (\frac {1+x}{3}\right )+\left (960 x+1440 x^2+540 x^3+60 x^4\right ) \log ^3\left (\frac {1+x}{3}\right )\right )}{\log ^3\left (x^2\right ) \left (-5 x^4-5 x^5+\left (60 x^3+75 x^4+15 x^5\right ) \log \left (\frac {1+x}{3}\right )+\left (-240 x^2-360 x^3-135 x^4-15 x^5\right ) \log ^2\left (\frac {1+x}{3}\right )+\left (320 x+560 x^2+300 x^3+65 x^4+5 x^5\right ) \log ^3\left (\frac {1+x}{3}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (-10 x (1+x) \log \left (x^2\right ) \log \left (\frac {1+x}{3}\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^2+50 (1+x) \left (-x+(4+x) \log \left (\frac {1+x}{3}\right )\right )^3+x^2 \log ^3\left (x^2\right ) \log \left (\frac {1+x}{3}\right ) \left (x^2-4 (1+x) \log ^2\left (\frac {1+x}{3}\right )\right )-5 x \log ^2\left (x^2\right ) \left (-x^3+x^2 (4+x) \log \left (\frac {1+x}{3}\right )+4 x (1+x) \log ^2\left (\frac {1+x}{3}\right )-4 \left (4+5 x+x^2\right ) \log ^3\left (\frac {1+x}{3}\right )\right )\right )}{5 x (1+x) \log ^3\left (x^2\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^3} \, dx\\ &=\frac {6}{5} \int \frac {-10 x (1+x) \log \left (x^2\right ) \log \left (\frac {1+x}{3}\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^2+50 (1+x) \left (-x+(4+x) \log \left (\frac {1+x}{3}\right )\right )^3+x^2 \log ^3\left (x^2\right ) \log \left (\frac {1+x}{3}\right ) \left (x^2-4 (1+x) \log ^2\left (\frac {1+x}{3}\right )\right )-5 x \log ^2\left (x^2\right ) \left (-x^3+x^2 (4+x) \log \left (\frac {1+x}{3}\right )+4 x (1+x) \log ^2\left (\frac {1+x}{3}\right )-4 \left (4+5 x+x^2\right ) \log ^3\left (\frac {1+x}{3}\right )\right )}{x (1+x) \log ^3\left (x^2\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^3} \, dx\\ &=\frac {6}{5} \int \left (\frac {2 \left (-1600-1200 x-300 x^2-25 x^3+80 x \log \left (x^2\right )+40 x^2 \log \left (x^2\right )+5 x^3 \log \left (x^2\right )-40 x \log ^2\left (x^2\right )-10 x^2 \log ^2\left (x^2\right )+2 x^2 \log ^3\left (x^2\right )\right )}{x (4+x)^3 \log ^3\left (x^2\right )}-\frac {x^4 \left (12+4 x+x^2\right )}{(1+x) (4+x)^3 \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}-\frac {x^2 \left (-240-140 x-40 x^2-5 x^3+4 x \log \left (x^2\right )-4 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )\right )}{(1+x) (4+x)^3 \log \left (x^2\right ) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^2}+\frac {2 x \left (80+40 x+5 x^2-80 \log \left (x^2\right )-20 x \log \left (x^2\right )+6 x \log ^2\left (x^2\right )\right )}{(4+x)^3 \log ^2\left (x^2\right ) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )}\right ) \, dx\\ &=-\left (\frac {6}{5} \int \frac {x^4 \left (12+4 x+x^2\right )}{(1+x) (4+x)^3 \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3} \, dx\right )-\frac {6}{5} \int \frac {x^2 \left (-240-140 x-40 x^2-5 x^3+4 x \log \left (x^2\right )-4 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )\right )}{(1+x) (4+x)^3 \log \left (x^2\right ) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^2} \, dx+\frac {12}{5} \int \frac {-1600-1200 x-300 x^2-25 x^3+80 x \log \left (x^2\right )+40 x^2 \log \left (x^2\right )+5 x^3 \log \left (x^2\right )-40 x \log ^2\left (x^2\right )-10 x^2 \log ^2\left (x^2\right )+2 x^2 \log ^3\left (x^2\right )}{x (4+x)^3 \log ^3\left (x^2\right )} \, dx+\frac {12}{5} \int \frac {x \left (80+40 x+5 x^2-80 \log \left (x^2\right )-20 x \log \left (x^2\right )+6 x \log ^2\left (x^2\right )\right )}{(4+x)^3 \log ^2\left (x^2\right ) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )} \, dx\\ &=-\left (\frac {6}{5} \int \frac {x^2 \left (-5 \left (48+28 x+8 x^2+x^3\right )+(-2+x)^2 x \log \left (x^2\right )\right )}{(1+x) (4+x)^3 \log \left (x^2\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^2} \, dx\right )-\frac {6}{5} \int \left (\frac {69}{\left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}-\frac {9 x}{\left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}+\frac {x^2}{\left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}+\frac {1}{3 (1+x) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}-\frac {1024}{(4+x)^3 \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}+\frac {1024}{(4+x)^2 \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}-\frac {1408}{3 (4+x) \left (-x+4 \log \left (\frac {1+x}{3}\right )+x \log \left (\frac {1+x}{3}\right )\right )^3}\right ) \, dx+\frac {12}{5} \int \left (\frac {2 x}{(4+x)^3}-\frac {25}{x \log ^3\left (x^2\right )}+\frac {5}{(4+x) \log ^2\left (x^2\right )}-\frac {10}{(4+x)^2 \log \left (x^2\right )}\right ) \, dx+\frac {12}{5} \int \frac {x \left (-5 (4+x)^2+20 (4+x) \log \left (x^2\right )-6 x \log ^2\left (x^2\right )\right )}{(4+x)^3 \log ^2\left (x^2\right ) \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.33, size = 104, normalized size = 2.60 \begin {gather*} -\frac {6}{5} \left (-\frac {25}{2 \log ^2\left (x^2\right )}+\frac {5 x \log \left (\frac {1+x}{3}\right )}{\log \left (x^2\right ) \left (-x+(4+x) \log \left (\frac {1+x}{3}\right )\right )}+\frac {x^2-2 x (4+x) \log \left (\frac {1+x}{3}\right )+8 (2+x) \log ^2\left (\frac {1+x}{3}\right )}{2 \left (x-(4+x) \log \left (\frac {1+x}{3}\right )\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 158, normalized size = 3.95 \begin {gather*} -\frac {3 \, {\left ({\left (8 \, {\left (x + 2\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )^{2} + x^{2} - 2 \, {\left (x^{2} + 4 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )\right )} \log \left (x^{2}\right )^{2} - 25 \, {\left (x^{2} + 8 \, x + 16\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )^{2} - 25 \, x^{2} - 10 \, {\left (x^{2} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right ) - {\left (x^{2} + 4 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )^{2}\right )} \log \left (x^{2}\right ) + 50 \, {\left (x^{2} + 4 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )\right )}}{5 \, {\left ({\left (x^{2} + 8 \, x + 16\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )^{2} + x^{2} - 2 \, {\left (x^{2} + 4 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {1}{3}\right )\right )} \log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.23, size = 485, normalized size = 12.12 \begin {gather*} -\frac {3 \, {\left (2 \, x^{4} \log \relax (3) \log \left (x^{2}\right ) - 2 \, x^{4} \log \left (x^{2}\right ) \log \left (x + 1\right ) - 10 \, x^{4} \log \relax (3) + x^{4} \log \left (x^{2}\right ) + 8 \, x^{3} \log \relax (3) \log \left (x^{2}\right ) + 10 \, x^{4} \log \left (x + 1\right ) - 8 \, x^{3} \log \left (x^{2}\right ) \log \left (x + 1\right ) - 10 \, x^{4} - 80 \, x^{3} \log \relax (3) + 80 \, x^{3} \log \left (x + 1\right ) - 40 \, x^{3} - 160 \, x^{2} \log \relax (3) + 160 \, x^{2} \log \left (x + 1\right )\right )}}{5 \, {\left (x^{4} \log \relax (3)^{2} \log \left (x^{2}\right ) - 2 \, x^{4} \log \relax (3) \log \left (x^{2}\right ) \log \left (x + 1\right ) + x^{4} \log \left (x^{2}\right ) \log \left (x + 1\right )^{2} + 2 \, x^{4} \log \relax (3) \log \left (x^{2}\right ) + 16 \, x^{3} \log \relax (3)^{2} \log \left (x^{2}\right ) - 2 \, x^{4} \log \left (x^{2}\right ) \log \left (x + 1\right ) - 32 \, x^{3} \log \relax (3) \log \left (x^{2}\right ) \log \left (x + 1\right ) + 16 \, x^{3} \log \left (x^{2}\right ) \log \left (x + 1\right )^{2} + x^{4} \log \left (x^{2}\right ) + 24 \, x^{3} \log \relax (3) \log \left (x^{2}\right ) + 96 \, x^{2} \log \relax (3)^{2} \log \left (x^{2}\right ) - 24 \, x^{3} \log \left (x^{2}\right ) \log \left (x + 1\right ) - 192 \, x^{2} \log \relax (3) \log \left (x^{2}\right ) \log \left (x + 1\right ) + 96 \, x^{2} \log \left (x^{2}\right ) \log \left (x + 1\right )^{2} + 8 \, x^{3} \log \left (x^{2}\right ) + 96 \, x^{2} \log \relax (3) \log \left (x^{2}\right ) + 256 \, x \log \relax (3)^{2} \log \left (x^{2}\right ) - 96 \, x^{2} \log \left (x^{2}\right ) \log \left (x + 1\right ) - 512 \, x \log \relax (3) \log \left (x^{2}\right ) \log \left (x + 1\right ) + 256 \, x \log \left (x^{2}\right ) \log \left (x + 1\right )^{2} + 16 \, x^{2} \log \left (x^{2}\right ) + 128 \, x \log \relax (3) \log \left (x^{2}\right ) + 256 \, \log \relax (3)^{2} \log \left (x^{2}\right ) - 128 \, x \log \left (x^{2}\right ) \log \left (x + 1\right ) - 512 \, \log \relax (3) \log \left (x^{2}\right ) \log \left (x + 1\right ) + 256 \, \log \left (x^{2}\right ) \log \left (x + 1\right )^{2}\right )}} - \frac {3 \, {\left (2 \, x \log \left (x^{2}\right ) - 5 \, x - 20\right )}}{x \log \left (x^{2}\right )^{2} + 4 \, \log \left (x^{2}\right )^{2}} - \frac {24 \, {\left (x + 2\right )}}{5 \, {\left (x^{2} + 8 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.21, size = 892, normalized size = 22.30
method | result | size |
risch | \(-\frac {12 \left (-400-200 x +20 x^{2} \ln \relax (x )+64 \ln \relax (x )^{2}-25 x^{2}+32 x \ln \relax (x )^{2}+80 x \ln \relax (x )-20 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-32 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+16 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-24 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+16 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-20 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+40 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-5 i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+10 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+64 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-32 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-16 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (x )-2 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+8 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-12 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+8 \pi ^{2} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-5 i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}-2 \pi ^{2} x \mathrm {csgn}\left (i x^{2}\right )^{6}-16 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \relax (x )+32 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (x )\right )}{5 \left (4+x \right )^{2} \left (4 \ln \relax (x )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )^{2}}+\frac {\frac {6 \pi \,x^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}-\frac {12 \pi \,x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}+\frac {6 \pi \,x^{4} \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}-\frac {3 \pi \,x^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{5}+\frac {6 \pi \,x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{5}-\frac {3 \pi \,x^{4} \mathrm {csgn}\left (i x^{2}\right )^{3}}{5}+\frac {24 \pi \,x^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}-\frac {48 \pi \,x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}+\frac {24 \pi \,x^{3} \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}+\frac {24 i x^{4} \ln \relax (x ) \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}+48 i x^{3}-192 i x^{2} \ln \left (\frac {x}{3}+\frac {1}{3}\right )+\frac {96 i x^{3} \ln \relax (x ) \ln \left (\frac {x}{3}+\frac {1}{3}\right )}{5}-12 i x^{4} \ln \left (\frac {x}{3}+\frac {1}{3}\right )-96 i x^{3} \ln \left (\frac {x}{3}+\frac {1}{3}\right )-\frac {12 i x^{4} \ln \relax (x )}{5}+12 i x^{4}}{\left (x \ln \left (\frac {x}{3}+\frac {1}{3}\right )-x +4 \ln \left (\frac {x}{3}+\frac {1}{3}\right )\right )^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right ) \left (x^{2}+8 x +16\right )}\) | \(892\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 290, normalized size = 7.25 \begin {gather*} \frac {3 \, {\left (25 \, {\left (\log \relax (3)^{2} + 2 \, \log \relax (3) + 1\right )} x^{2} - {\left (32 \, {\left (x + 2\right )} \log \relax (x)^{2} - 25 \, x^{2} + 20 \, {\left (x^{2} + 4 \, x\right )} \log \relax (x) - 200 \, x - 400\right )} \log \left (x + 1\right )^{2} - 4 \, {\left (x^{2} {\left (2 \, \log \relax (3) + 1\right )} + 8 \, {\left (\log \relax (3)^{2} + \log \relax (3)\right )} x + 16 \, \log \relax (3)^{2}\right )} \log \relax (x)^{2} + 200 \, {\left (\log \relax (3)^{2} + \log \relax (3)\right )} x + 400 \, \log \relax (3)^{2} - 2 \, {\left (25 \, x^{2} {\left (\log \relax (3) + 1\right )} - 4 \, {\left (x^{2} + 4 \, x {\left (2 \, \log \relax (3) + 1\right )} + 16 \, \log \relax (3)\right )} \log \relax (x)^{2} + 100 \, x {\left (2 \, \log \relax (3) + 1\right )} - 10 \, {\left (x^{2} {\left (2 \, \log \relax (3) + 1\right )} + 8 \, x \log \relax (3)\right )} \log \relax (x) + 400 \, \log \relax (3)\right )} \log \left (x + 1\right ) - 20 \, {\left ({\left (\log \relax (3)^{2} + \log \relax (3)\right )} x^{2} + 4 \, x \log \relax (3)^{2}\right )} \log \relax (x)\right )}}{20 \, {\left ({\left (x^{2} + 8 \, x + 16\right )} \log \left (x + 1\right )^{2} \log \relax (x)^{2} - 2 \, {\left (x^{2} {\left (\log \relax (3) + 1\right )} + 4 \, x {\left (2 \, \log \relax (3) + 1\right )} + 16 \, \log \relax (3)\right )} \log \left (x + 1\right ) \log \relax (x)^{2} + {\left ({\left (\log \relax (3)^{2} + 2 \, \log \relax (3) + 1\right )} x^{2} + 8 \, {\left (\log \relax (3)^{2} + \log \relax (3)\right )} x + 16 \, \log \relax (3)^{2}\right )} \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 366, normalized size = 9.15 \begin {gather*} \frac {\frac {6\,x\,{\ln \left (x^2\right )}^2}{{\left (x+4\right )}^2}-\frac {3\,x\,\ln \left (x^2\right )}{x+4}+15}{{\ln \left (x^2\right )}^2}-\frac {\frac {3\,x}{x+4}-\frac {6\,x\,\ln \left (x^2\right )}{{\left (x+4\right )}^2}+\frac {3\,x\,{\ln \left (x^2\right )}^2\,\left (x-4\right )}{{\left (x+4\right )}^3}}{\ln \left (x^2\right )}-\frac {\frac {84\,x}{5}+\frac {48}{5}}{x^2+8\,x+16}-\frac {\ln \left (x^2\right )\,\left (12\,x-3\,x^2\right )}{x^3+12\,x^2+48\,x+64}+\frac {6\,\left (-x^6\,{\ln \left (x^2\right )}^2+5\,x^6\,\ln \left (x^2\right )-5\,x^5\,{\ln \left (x^2\right )}^2+45\,x^5\,\ln \left (x^2\right )-16\,x^4\,{\ln \left (x^2\right )}^2+180\,x^4\,\ln \left (x^2\right )-12\,x^3\,{\ln \left (x^2\right )}^2+380\,x^3\,\ln \left (x^2\right )+240\,x^2\,\ln \left (x^2\right )\right )}{5\,{\ln \left (x^2\right )}^2\,\left (x-\ln \left (\frac {x}{3}+\frac {1}{3}\right )\,\left (x+4\right )\right )\,{\left (x+4\right )}^2\,\left (x^3+5\,x^2+16\,x+12\right )}+\frac {3\,\left (x^7\,{\ln \left (x^2\right )}^2+5\,x^6\,{\ln \left (x^2\right )}^2+16\,x^5\,{\ln \left (x^2\right )}^2+12\,x^4\,{\ln \left (x^2\right )}^2\right )}{5\,{\ln \left (x^2\right )}^2\,{\left (x+4\right )}^2\,\left ({\ln \left (\frac {x}{3}+\frac {1}{3}\right )}^2\,{\left (x+4\right )}^2+x^2-2\,x\,\ln \left (\frac {x}{3}+\frac {1}{3}\right )\,\left (x+4\right )\right )\,\left (x^3+5\,x^2+16\,x+12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.19, size = 240, normalized size = 6.00 \begin {gather*} \frac {24 \left (- x - 2\right )}{5 x^{2} + 40 x + 80} + \frac {- 3 x^{4} \log {\left (x^{2} \right )} + 30 x^{4} + 120 x^{3} + \left (6 x^{4} \log {\left (x^{2} \right )} - 30 x^{4} + 24 x^{3} \log {\left (x^{2} \right )} - 240 x^{3} - 480 x^{2}\right ) \log {\left (\frac {x}{3} + \frac {1}{3} \right )}}{5 x^{4} \log {\left (x^{2} \right )} + 40 x^{3} \log {\left (x^{2} \right )} + 80 x^{2} \log {\left (x^{2} \right )} + \left (- 10 x^{4} \log {\left (x^{2} \right )} - 120 x^{3} \log {\left (x^{2} \right )} - 480 x^{2} \log {\left (x^{2} \right )} - 640 x \log {\left (x^{2} \right )}\right ) \log {\left (\frac {x}{3} + \frac {1}{3} \right )} + \left (5 x^{4} \log {\left (x^{2} \right )} + 80 x^{3} \log {\left (x^{2} \right )} + 480 x^{2} \log {\left (x^{2} \right )} + 1280 x \log {\left (x^{2} \right )} + 1280 \log {\left (x^{2} \right )}\right ) \log {\left (\frac {x}{3} + \frac {1}{3} \right )}^{2}} + \frac {- 6 x \log {\left (x^{2} \right )} + 15 x + 60}{\left (x + 4\right ) \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________