3.17.74
Optimal. Leaf size=40
________________________________________________________________________________________
Rubi [F] time = 50.26, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(300*x^3 + 300*x^4 + (-3600*x^2 - 4500*x^3 - 900*x^4)*Log[(1 + x)/3] + (14400*x + 21600*x^2 + 8100*x^3 + 9
00*x^4)*Log[(1 + x)/3]^2 + (-19200 - 33600*x - 18000*x^2 - 3900*x^3 - 300*x^4)*Log[(1 + x)/3]^3 + Log[x^2]^2*(
-30*x^4 + (120*x^3 + 30*x^4)*Log[(1 + x)/3] + (120*x^2 + 120*x^3)*Log[(1 + x)/3]^2 + (-480*x - 600*x^2 - 120*x
^3)*Log[(1 + x)/3]^3) + Log[x^2]^3*(-6*x^4*Log[(1 + x)/3] + (24*x^2 + 24*x^3)*Log[(1 + x)/3]^3) + Log[x^2]*((6
0*x^3 + 60*x^4)*Log[(1 + x)/3] + (-480*x^2 - 600*x^3 - 120*x^4)*Log[(1 + x)/3]^2 + (960*x + 1440*x^2 + 540*x^3
+ 60*x^4)*Log[(1 + x)/3]^3))/(Log[x^2]^3*(-5*x^4 - 5*x^5 + (60*x^3 + 75*x^4 + 15*x^5)*Log[(1 + x)/3] + (-240*
x^2 - 360*x^3 - 135*x^4 - 15*x^5)*Log[(1 + x)/3]^2 + (320*x + 560*x^2 + 300*x^3 + 65*x^4 + 5*x^5)*Log[(1 + x)/
3]^3)),x]
[Out]
(3*x^2)/(5*(4 + x)^2) + 15/Log[x^2]^2 + 12*Defer[Int][1/((4 + x)*Log[x^2]^2), x] - 24*Defer[Int][1/((4 + x)^2*
Log[x^2]), x] - (2*Defer[Int][1/((1 + x)*(-x + 4*Log[(1 + x)/3] + x*Log[(1 + x)/3])^3), x])/5 + (6144*Defer[In
t][1/((4 + x)^3*(-x + 4*Log[(1 + x)/3] + x*Log[(1 + x)/3])^3), x])/5 + (2816*Defer[Int][1/((4 + x)*(-x + 4*Log
[(1 + x)/3] + x*Log[(1 + x)/3])^3), x])/5 + (1152*Defer[Int][1/((4 + x)^3*(-x + 4*Log[(1 + x)/3] + x*Log[(1 +
x)/3])), x])/5 + (72*Defer[Int][1/((4 + x)*(-x + 4*Log[(1 + x)/3] + x*Log[(1 + x)/3])), x])/5 - 48*Defer[Int][
1/((4 + x)*Log[x^2]^2*(-x + 4*Log[(1 + x)/3] + x*Log[(1 + x)/3])), x] - 48*Defer[Int][1/((4 + x)*Log[x^2]*(-x
+ 4*Log[(1 + x)/3] + x*Log[(1 + x)/3])), x] + (102*Defer[Int][(x - (4 + x)*Log[(1 + x)/3])^(-2), x])/5 - (6*De
fer[Int][x/(x - (4 + x)*Log[(1 + x)/3])^2, x])/5 + (2*Defer[Int][1/((1 + x)*(x - (4 + x)*Log[(1 + x)/3])^2), x
])/5 - (4608*Defer[Int][1/((4 + x)^3*(x - (4 + x)*Log[(1 + x)/3])^2), x])/5 + (3456*Defer[Int][1/((4 + x)^2*(x
- (4 + x)*Log[(1 + x)/3])^2), x])/5 - (992*Defer[Int][1/((4 + x)*(x - (4 + x)*Log[(1 + x)/3])^2), x])/5 - 30*
Defer[Int][1/(Log[x^2]*(x - (4 + x)*Log[(1 + x)/3])^2), x] + 6*Defer[Int][x/(Log[x^2]*(x - (4 + x)*Log[(1 + x)
/3])^2), x] + 6*Defer[Int][1/((1 + x)*Log[x^2]*(x - (4 + x)*Log[(1 + x)/3])^2), x] - 384*Defer[Int][1/((4 + x)
^2*Log[x^2]*(x - (4 + x)*Log[(1 + x)/3])^2), x] + 192*Defer[Int][1/((4 + x)*Log[x^2]*(x - (4 + x)*Log[(1 + x)/
3])^2), x] - (414*Defer[Int][(-x + (4 + x)*Log[(1 + x)/3])^(-3), x])/5 + (54*Defer[Int][x/(-x + (4 + x)*Log[(1
+ x)/3])^3, x])/5 - (6*Defer[Int][x^2/(-x + (4 + x)*Log[(1 + x)/3])^3, x])/5 - (6144*Defer[Int][1/((4 + x)^2*
(-x + (4 + x)*Log[(1 + x)/3])^3), x])/5 - (576*Defer[Int][1/((4 + x)^2*(-x + (4 + x)*Log[(1 + x)/3])), x])/5 +
12*Defer[Int][1/(Log[x^2]^2*(-x + (4 + x)*Log[(1 + x)/3])), x] + 192*Defer[Int][1/((4 + x)^2*Log[x^2]*(-x + (
4 + x)*Log[(1 + x)/3])), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.33, size = 104, normalized size = 2.60
Antiderivative was successfully verified.
[In]
Integrate[(300*x^3 + 300*x^4 + (-3600*x^2 - 4500*x^3 - 900*x^4)*Log[(1 + x)/3] + (14400*x + 21600*x^2 + 8100*x
^3 + 900*x^4)*Log[(1 + x)/3]^2 + (-19200 - 33600*x - 18000*x^2 - 3900*x^3 - 300*x^4)*Log[(1 + x)/3]^3 + Log[x^
2]^2*(-30*x^4 + (120*x^3 + 30*x^4)*Log[(1 + x)/3] + (120*x^2 + 120*x^3)*Log[(1 + x)/3]^2 + (-480*x - 600*x^2 -
120*x^3)*Log[(1 + x)/3]^3) + Log[x^2]^3*(-6*x^4*Log[(1 + x)/3] + (24*x^2 + 24*x^3)*Log[(1 + x)/3]^3) + Log[x^
2]*((60*x^3 + 60*x^4)*Log[(1 + x)/3] + (-480*x^2 - 600*x^3 - 120*x^4)*Log[(1 + x)/3]^2 + (960*x + 1440*x^2 + 5
40*x^3 + 60*x^4)*Log[(1 + x)/3]^3))/(Log[x^2]^3*(-5*x^4 - 5*x^5 + (60*x^3 + 75*x^4 + 15*x^5)*Log[(1 + x)/3] +
(-240*x^2 - 360*x^3 - 135*x^4 - 15*x^5)*Log[(1 + x)/3]^2 + (320*x + 560*x^2 + 300*x^3 + 65*x^4 + 5*x^5)*Log[(1
+ x)/3]^3)),x]
[Out]
(-6*(-25/(2*Log[x^2]^2) + (5*x*Log[(1 + x)/3])/(Log[x^2]*(-x + (4 + x)*Log[(1 + x)/3])) + (x^2 - 2*x*(4 + x)*L
og[(1 + x)/3] + 8*(2 + x)*Log[(1 + x)/3]^2)/(2*(x - (4 + x)*Log[(1 + x)/3])^2)))/5
________________________________________________________________________________________
fricas [B] time = 0.92, size = 158, normalized size = 3.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((24*x^3+24*x^2)*log(1/3*x+1/3)^3-6*x^4*log(1/3*x+1/3))*log(x^2)^3+((-120*x^3-600*x^2-480*x)*log(1/
3*x+1/3)^3+(120*x^3+120*x^2)*log(1/3*x+1/3)^2+(30*x^4+120*x^3)*log(1/3*x+1/3)-30*x^4)*log(x^2)^2+((60*x^4+540*
x^3+1440*x^2+960*x)*log(1/3*x+1/3)^3+(-120*x^4-600*x^3-480*x^2)*log(1/3*x+1/3)^2+(60*x^4+60*x^3)*log(1/3*x+1/3
))*log(x^2)+(-300*x^4-3900*x^3-18000*x^2-33600*x-19200)*log(1/3*x+1/3)^3+(900*x^4+8100*x^3+21600*x^2+14400*x)*
log(1/3*x+1/3)^2+(-900*x^4-4500*x^3-3600*x^2)*log(1/3*x+1/3)+300*x^4+300*x^3)/((5*x^5+65*x^4+300*x^3+560*x^2+3
20*x)*log(1/3*x+1/3)^3+(-15*x^5-135*x^4-360*x^3-240*x^2)*log(1/3*x+1/3)^2+(15*x^5+75*x^4+60*x^3)*log(1/3*x+1/3
)-5*x^5-5*x^4)/log(x^2)^3,x, algorithm="fricas")
[Out]
-3/5*((8*(x + 2)*log(1/3*x + 1/3)^2 + x^2 - 2*(x^2 + 4*x)*log(1/3*x + 1/3))*log(x^2)^2 - 25*(x^2 + 8*x + 16)*l
og(1/3*x + 1/3)^2 - 25*x^2 - 10*(x^2*log(1/3*x + 1/3) - (x^2 + 4*x)*log(1/3*x + 1/3)^2)*log(x^2) + 50*(x^2 + 4
*x)*log(1/3*x + 1/3))/(((x^2 + 8*x + 16)*log(1/3*x + 1/3)^2 + x^2 - 2*(x^2 + 4*x)*log(1/3*x + 1/3))*log(x^2)^2
)
________________________________________________________________________________________
giac [B] time = 1.23, size = 485, normalized size = 12.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((24*x^3+24*x^2)*log(1/3*x+1/3)^3-6*x^4*log(1/3*x+1/3))*log(x^2)^3+((-120*x^3-600*x^2-480*x)*log(1/
3*x+1/3)^3+(120*x^3+120*x^2)*log(1/3*x+1/3)^2+(30*x^4+120*x^3)*log(1/3*x+1/3)-30*x^4)*log(x^2)^2+((60*x^4+540*
x^3+1440*x^2+960*x)*log(1/3*x+1/3)^3+(-120*x^4-600*x^3-480*x^2)*log(1/3*x+1/3)^2+(60*x^4+60*x^3)*log(1/3*x+1/3
))*log(x^2)+(-300*x^4-3900*x^3-18000*x^2-33600*x-19200)*log(1/3*x+1/3)^3+(900*x^4+8100*x^3+21600*x^2+14400*x)*
log(1/3*x+1/3)^2+(-900*x^4-4500*x^3-3600*x^2)*log(1/3*x+1/3)+300*x^4+300*x^3)/((5*x^5+65*x^4+300*x^3+560*x^2+3
20*x)*log(1/3*x+1/3)^3+(-15*x^5-135*x^4-360*x^3-240*x^2)*log(1/3*x+1/3)^2+(15*x^5+75*x^4+60*x^3)*log(1/3*x+1/3
)-5*x^5-5*x^4)/log(x^2)^3,x, algorithm="giac")
[Out]
-3/5*(2*x^4*log(3)*log(x^2) - 2*x^4*log(x^2)*log(x + 1) - 10*x^4*log(3) + x^4*log(x^2) + 8*x^3*log(3)*log(x^2)
+ 10*x^4*log(x + 1) - 8*x^3*log(x^2)*log(x + 1) - 10*x^4 - 80*x^3*log(3) + 80*x^3*log(x + 1) - 40*x^3 - 160*x
^2*log(3) + 160*x^2*log(x + 1))/(x^4*log(3)^2*log(x^2) - 2*x^4*log(3)*log(x^2)*log(x + 1) + x^4*log(x^2)*log(x
+ 1)^2 + 2*x^4*log(3)*log(x^2) + 16*x^3*log(3)^2*log(x^2) - 2*x^4*log(x^2)*log(x + 1) - 32*x^3*log(3)*log(x^2
)*log(x + 1) + 16*x^3*log(x^2)*log(x + 1)^2 + x^4*log(x^2) + 24*x^3*log(3)*log(x^2) + 96*x^2*log(3)^2*log(x^2)
- 24*x^3*log(x^2)*log(x + 1) - 192*x^2*log(3)*log(x^2)*log(x + 1) + 96*x^2*log(x^2)*log(x + 1)^2 + 8*x^3*log(
x^2) + 96*x^2*log(3)*log(x^2) + 256*x*log(3)^2*log(x^2) - 96*x^2*log(x^2)*log(x + 1) - 512*x*log(3)*log(x^2)*l
og(x + 1) + 256*x*log(x^2)*log(x + 1)^2 + 16*x^2*log(x^2) + 128*x*log(3)*log(x^2) + 256*log(3)^2*log(x^2) - 12
8*x*log(x^2)*log(x + 1) - 512*log(3)*log(x^2)*log(x + 1) + 256*log(x^2)*log(x + 1)^2) - 3*(2*x*log(x^2) - 5*x
- 20)/(x*log(x^2)^2 + 4*log(x^2)^2) - 24/5*(x + 2)/(x^2 + 8*x + 16)
________________________________________________________________________________________
maple [C] time = 2.21, size = 892, normalized size = 22.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((24*x^3+24*x^2)*ln(1/3*x+1/3)^3-6*x^4*ln(1/3*x+1/3))*ln(x^2)^3+((-120*x^3-600*x^2-480*x)*ln(1/3*x+1/3)^3
+(120*x^3+120*x^2)*ln(1/3*x+1/3)^2+(30*x^4+120*x^3)*ln(1/3*x+1/3)-30*x^4)*ln(x^2)^2+((60*x^4+540*x^3+1440*x^2+
960*x)*ln(1/3*x+1/3)^3+(-120*x^4-600*x^3-480*x^2)*ln(1/3*x+1/3)^2+(60*x^4+60*x^3)*ln(1/3*x+1/3))*ln(x^2)+(-300
*x^4-3900*x^3-18000*x^2-33600*x-19200)*ln(1/3*x+1/3)^3+(900*x^4+8100*x^3+21600*x^2+14400*x)*ln(1/3*x+1/3)^2+(-
900*x^4-4500*x^3-3600*x^2)*ln(1/3*x+1/3)+300*x^4+300*x^3)/((5*x^5+65*x^4+300*x^3+560*x^2+320*x)*ln(1/3*x+1/3)^
3+(-15*x^5-135*x^4-360*x^3-240*x^2)*ln(1/3*x+1/3)^2+(15*x^5+75*x^4+60*x^3)*ln(1/3*x+1/3)-5*x^5-5*x^4)/ln(x^2)^
3,x,method=_RETURNVERBOSE)
[Out]
-12/5*(-400-200*x+20*x^2*ln(x)+64*ln(x)^2-25*x^2+32*x*ln(x)^2+80*x*ln(x)-4*Pi^2*csgn(I*x^2)^6-4*Pi^2*csgn(I*x)
^4*csgn(I*x^2)^2+16*Pi^2*csgn(I*x)^3*csgn(I*x^2)^3-24*Pi^2*csgn(I*x)^2*csgn(I*x^2)^4+16*Pi^2*csgn(I*x)*csgn(I*
x^2)^5-16*I*Pi*x*csgn(I*x)^2*csgn(I*x^2)*ln(x)+32*I*Pi*x*csgn(I*x)*csgn(I*x^2)^2*ln(x)-2*Pi^2*x*csgn(I*x^2)^6-
2*Pi^2*x*csgn(I*x)^4*csgn(I*x^2)^2+8*Pi^2*x*csgn(I*x)^3*csgn(I*x^2)^3-12*Pi^2*x*csgn(I*x)^2*csgn(I*x^2)^4+8*Pi
^2*x*csgn(I*x)*csgn(I*x^2)^5-5*I*Pi*x^2*csgn(I*x^2)^3-20*I*Pi*x*csgn(I*x^2)^3-32*I*ln(x)*Pi*csgn(I*x^2)^3-5*I*
Pi*x^2*csgn(I*x)^2*csgn(I*x^2)+10*I*Pi*x^2*csgn(I*x)*csgn(I*x^2)^2-20*I*Pi*x*csgn(I*x)^2*csgn(I*x^2)+64*I*ln(x
)*Pi*csgn(I*x)*csgn(I*x^2)^2+40*I*Pi*x*csgn(I*x)*csgn(I*x^2)^2-32*I*ln(x)*Pi*csgn(I*x)^2*csgn(I*x^2)-16*I*Pi*x
*csgn(I*x^2)^3*ln(x))/(4+x)^2/(4*ln(x)-I*Pi*csgn(I*x^2)*csgn(I*x)^2+2*I*Pi*csgn(I*x^2)^2*csgn(I*x)-I*Pi*csgn(I
*x^2)^3)^2+3/5*(2*Pi*x^4*csgn(I*x)^2*csgn(I*x^2)*ln(1/3*x+1/3)-4*Pi*x^4*csgn(I*x)*csgn(I*x^2)^2*ln(1/3*x+1/3)+
2*Pi*x^4*csgn(I*x^2)^3*ln(1/3*x+1/3)-Pi*x^4*csgn(I*x)^2*csgn(I*x^2)+2*Pi*x^4*csgn(I*x)*csgn(I*x^2)^2-Pi*x^4*cs
gn(I*x^2)^3+8*Pi*x^3*csgn(I*x)^2*csgn(I*x^2)*ln(1/3*x+1/3)-16*Pi*x^3*csgn(I*x)*csgn(I*x^2)^2*ln(1/3*x+1/3)+8*P
i*x^3*csgn(I*x^2)^3*ln(1/3*x+1/3)+8*I*x^4*ln(x)*ln(1/3*x+1/3)+80*I*x^3-320*I*x^2*ln(1/3*x+1/3)+32*I*x^3*ln(x)*
ln(1/3*x+1/3)-20*I*x^4*ln(1/3*x+1/3)-160*I*x^3*ln(1/3*x+1/3)-4*I*x^4*ln(x)+20*I*x^4)/(x*ln(1/3*x+1/3)-x+4*ln(1
/3*x+1/3))^2/(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x^2)^3+4*I*ln(x))/(x^2+8*x+16)
________________________________________________________________________________________
maxima [B] time = 0.81, size = 290, normalized size = 7.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((24*x^3+24*x^2)*log(1/3*x+1/3)^3-6*x^4*log(1/3*x+1/3))*log(x^2)^3+((-120*x^3-600*x^2-480*x)*log(1/
3*x+1/3)^3+(120*x^3+120*x^2)*log(1/3*x+1/3)^2+(30*x^4+120*x^3)*log(1/3*x+1/3)-30*x^4)*log(x^2)^2+((60*x^4+540*
x^3+1440*x^2+960*x)*log(1/3*x+1/3)^3+(-120*x^4-600*x^3-480*x^2)*log(1/3*x+1/3)^2+(60*x^4+60*x^3)*log(1/3*x+1/3
))*log(x^2)+(-300*x^4-3900*x^3-18000*x^2-33600*x-19200)*log(1/3*x+1/3)^3+(900*x^4+8100*x^3+21600*x^2+14400*x)*
log(1/3*x+1/3)^2+(-900*x^4-4500*x^3-3600*x^2)*log(1/3*x+1/3)+300*x^4+300*x^3)/((5*x^5+65*x^4+300*x^3+560*x^2+3
20*x)*log(1/3*x+1/3)^3+(-15*x^5-135*x^4-360*x^3-240*x^2)*log(1/3*x+1/3)^2+(15*x^5+75*x^4+60*x^3)*log(1/3*x+1/3
)-5*x^5-5*x^4)/log(x^2)^3,x, algorithm="maxima")
[Out]
3/20*(25*(log(3)^2 + 2*log(3) + 1)*x^2 - (32*(x + 2)*log(x)^2 - 25*x^2 + 20*(x^2 + 4*x)*log(x) - 200*x - 400)*
log(x + 1)^2 - 4*(x^2*(2*log(3) + 1) + 8*(log(3)^2 + log(3))*x + 16*log(3)^2)*log(x)^2 + 200*(log(3)^2 + log(3
))*x + 400*log(3)^2 - 2*(25*x^2*(log(3) + 1) - 4*(x^2 + 4*x*(2*log(3) + 1) + 16*log(3))*log(x)^2 + 100*x*(2*lo
g(3) + 1) - 10*(x^2*(2*log(3) + 1) + 8*x*log(3))*log(x) + 400*log(3))*log(x + 1) - 20*((log(3)^2 + log(3))*x^2
+ 4*x*log(3)^2)*log(x))/((x^2 + 8*x + 16)*log(x + 1)^2*log(x)^2 - 2*(x^2*(log(3) + 1) + 4*x*(2*log(3) + 1) +
16*log(3))*log(x + 1)*log(x)^2 + ((log(3)^2 + 2*log(3) + 1)*x^2 + 8*(log(3)^2 + log(3))*x + 16*log(3)^2)*log(x
)^2)
________________________________________________________________________________________
mupad [B] time = 1.64, size = 366, normalized size = 9.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x/3 + 1/3)^2*(14400*x + 21600*x^2 + 8100*x^3 + 900*x^4) - log(x/3 + 1/3)*(3600*x^2 + 4500*x^3 + 900*
x^4) - log(x/3 + 1/3)^3*(33600*x + 18000*x^2 + 3900*x^3 + 300*x^4 + 19200) + log(x^2)^3*(log(x/3 + 1/3)^3*(24*
x^2 + 24*x^3) - 6*x^4*log(x/3 + 1/3)) + log(x^2)*(log(x/3 + 1/3)^3*(960*x + 1440*x^2 + 540*x^3 + 60*x^4) - log
(x/3 + 1/3)^2*(480*x^2 + 600*x^3 + 120*x^4) + log(x/3 + 1/3)*(60*x^3 + 60*x^4)) - log(x^2)^2*(log(x/3 + 1/3)^3
*(480*x + 600*x^2 + 120*x^3) - log(x/3 + 1/3)^2*(120*x^2 + 120*x^3) - log(x/3 + 1/3)*(120*x^3 + 30*x^4) + 30*x
^4) + 300*x^3 + 300*x^4)/(log(x^2)^3*(log(x/3 + 1/3)^2*(240*x^2 + 360*x^3 + 135*x^4 + 15*x^5) - log(x/3 + 1/3)
^3*(320*x + 560*x^2 + 300*x^3 + 65*x^4 + 5*x^5) - log(x/3 + 1/3)*(60*x^3 + 75*x^4 + 15*x^5) + 5*x^4 + 5*x^5)),
x)
[Out]
((6*x*log(x^2)^2)/(x + 4)^2 - (3*x*log(x^2))/(x + 4) + 15)/log(x^2)^2 - ((3*x)/(x + 4) - (6*x*log(x^2))/(x + 4
)^2 + (3*x*log(x^2)^2*(x - 4))/(x + 4)^3)/log(x^2) - ((84*x)/5 + 48/5)/(8*x + x^2 + 16) - (log(x^2)*(12*x - 3*
x^2))/(48*x + 12*x^2 + x^3 + 64) + (6*(240*x^2*log(x^2) + 380*x^3*log(x^2) + 180*x^4*log(x^2) + 45*x^5*log(x^2
) + 5*x^6*log(x^2) - 12*x^3*log(x^2)^2 - 16*x^4*log(x^2)^2 - 5*x^5*log(x^2)^2 - x^6*log(x^2)^2))/(5*log(x^2)^2
*(x - log(x/3 + 1/3)*(x + 4))*(x + 4)^2*(16*x + 5*x^2 + x^3 + 12)) + (3*(12*x^4*log(x^2)^2 + 16*x^5*log(x^2)^2
+ 5*x^6*log(x^2)^2 + x^7*log(x^2)^2))/(5*log(x^2)^2*(x + 4)^2*(log(x/3 + 1/3)^2*(x + 4)^2 + x^2 - 2*x*log(x/3
+ 1/3)*(x + 4))*(16*x + 5*x^2 + x^3 + 12))
________________________________________________________________________________________
sympy [B] time = 1.19, size = 240, normalized size = 6.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((24*x**3+24*x**2)*ln(1/3*x+1/3)**3-6*x**4*ln(1/3*x+1/3))*ln(x**2)**3+((-120*x**3-600*x**2-480*x)*l
n(1/3*x+1/3)**3+(120*x**3+120*x**2)*ln(1/3*x+1/3)**2+(30*x**4+120*x**3)*ln(1/3*x+1/3)-30*x**4)*ln(x**2)**2+((6
0*x**4+540*x**3+1440*x**2+960*x)*ln(1/3*x+1/3)**3+(-120*x**4-600*x**3-480*x**2)*ln(1/3*x+1/3)**2+(60*x**4+60*x
**3)*ln(1/3*x+1/3))*ln(x**2)+(-300*x**4-3900*x**3-18000*x**2-33600*x-19200)*ln(1/3*x+1/3)**3+(900*x**4+8100*x*
*3+21600*x**2+14400*x)*ln(1/3*x+1/3)**2+(-900*x**4-4500*x**3-3600*x**2)*ln(1/3*x+1/3)+300*x**4+300*x**3)/((5*x
**5+65*x**4+300*x**3+560*x**2+320*x)*ln(1/3*x+1/3)**3+(-15*x**5-135*x**4-360*x**3-240*x**2)*ln(1/3*x+1/3)**2+(
15*x**5+75*x**4+60*x**3)*ln(1/3*x+1/3)-5*x**5-5*x**4)/ln(x**2)**3,x)
[Out]
24*(-x - 2)/(5*x**2 + 40*x + 80) + (-3*x**4*log(x**2) + 30*x**4 + 120*x**3 + (6*x**4*log(x**2) - 30*x**4 + 24*
x**3*log(x**2) - 240*x**3 - 480*x**2)*log(x/3 + 1/3))/(5*x**4*log(x**2) + 40*x**3*log(x**2) + 80*x**2*log(x**2
) + (-10*x**4*log(x**2) - 120*x**3*log(x**2) - 480*x**2*log(x**2) - 640*x*log(x**2))*log(x/3 + 1/3) + (5*x**4*
log(x**2) + 80*x**3*log(x**2) + 480*x**2*log(x**2) + 1280*x*log(x**2) + 1280*log(x**2))*log(x/3 + 1/3)**2) + (
-6*x*log(x**2) + 15*x + 60)/((x + 4)*log(x**2)**2)
________________________________________________________________________________________