3.17.76 e8x+(x2)25e810x2e8(50e820x220x2log(x2))e8xdx

Optimal. Leaf size=20 x+(x2)5(52x2e8)

________________________________________________________________________________________

Rubi [F]  time = 1.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e8x+(x2)25e810x2e8(50e820x220x2log(x2))e8xdx

Verification is not applicable to the result.

[In]

Int[(-(E^8*x) + (x^2)^((25*E^8 - 10*x^2)/E^8)*(50*E^8 - 20*x^2 - 20*x^2*Log[x^2]))/(E^8*x),x]

[Out]

-x + 25*Defer[Subst][Defer[Int][x^(24 - (10*x)/E^8), x], x, x^2] - (10*Defer[Subst][Defer[Int][x^(25 - (10*x)/
E^8), x], x, x^2])/E^8 - (10*Log[x^2]*Defer[Subst][Defer[Int][x^(25 - (10*x)/E^8), x], x, x^2])/E^8 + (10*Defe
r[Subst][Defer[Int][Defer[Int][x^(25 - (10*x)/E^8), x]/x, x], x, x^2])/E^8

Rubi steps

integral=e8x+(x2)25e810x2e8(50e820x220x2log(x2))xdxe8=(e810x49(x2)10x2e8(5e8+2x2+2x2log(x2)))dxe8=x10x49(x2)10x2e8(5e8+2x2+2x2log(x2))dxe8=x5Subst(x2410xe8(5e8+2x+2xlog(x))dx,x,x2)e8=x5Subst((5e8x2410xe8+2x2510xe8+2x2510xe8log(x))dx,x,x2)e8=x+25Subst(x2410xe8dx,x,x2)10Subst(x2510xe8dx,x,x2)e810Subst(x2510xe8log(x)dx,x,x2)e8=x+25Subst(x2410xe8dx,x,x2)10Subst(x2510xe8dx,x,x2)e8+10Subst(x2510xe8dxxdx,x,x2)e8(10log(x2))Subst(x2510xe8dx,x,x2)e8

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 18, normalized size = 0.90 x+(x2)2510x2e8

Antiderivative was successfully verified.

[In]

Integrate[(-(E^8*x) + (x^2)^((25*E^8 - 10*x^2)/E^8)*(50*E^8 - 20*x^2 - 20*x^2*Log[x^2]))/(E^8*x),x]

[Out]

-x + (x^2)^(25 - (10*x^2)/E^8)

________________________________________________________________________________________

fricas [B]  time = 0.68, size = 44, normalized size = 2.20 (x2)5(2x25e8)e(8)x1(x2)5(2x25e8)e(8)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*x^2*log(x^2)+50*exp(4)^2-20*x^2)*exp((25*exp(4)^2-10*x^2)*log(x^2)/exp(4)^2)-x*exp(4)^2)/x/exp
(4)^2,x, algorithm="fricas")

[Out]

-((x^2)^(5*(2*x^2 - 5*e^8)*e^(-8))*x - 1)/(x^2)^(5*(2*x^2 - 5*e^8)*e^(-8))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*x^2*log(x^2)+50*exp(4)^2-20*x^2)*exp((25*exp(4)^2-10*x^2)*log(x^2)/exp(4)^2)-x*exp(4)^2)/x/exp
(4)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.14, size = 18, normalized size = 0.90




method result size



risch (x2)2510x2e8x 18
norman (e4e(25e810x2)ln(x2)e8xe4)e4 37
default e8(e8e(25e810x2)ln(x2)e8xe8) 41



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-20*x^2*ln(x^2)+50*exp(4)^2-20*x^2)*exp((25*exp(4)^2-10*x^2)*ln(x^2)/exp(4)^2)-x*exp(4)^2)/x/exp(4)^2,x,
method=_RETURNVERBOSE)

[Out]

(x^2)^(25-10*x^2*exp(-8))-x

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 25, normalized size = 1.25 (x50e(20x2e(8)log(x)+8)xe8)e(8)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*x^2*log(x^2)+50*exp(4)^2-20*x^2)*exp((25*exp(4)^2-10*x^2)*log(x^2)/exp(4)^2)-x*exp(4)^2)/x/exp
(4)^2,x, algorithm="maxima")

[Out]

(x^50*e^(-20*x^2*e^(-8)*log(x) + 8) - x*e^8)*e^(-8)

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 21, normalized size = 1.05 x50(x2)10x2e8x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-8)*(x*exp(8) + exp(log(x^2)*exp(-8)*(25*exp(8) - 10*x^2))*(20*x^2*log(x^2) - 50*exp(8) + 20*x^2)))/
x,x)

[Out]

x^50/(x^2)^(10*x^2*exp(-8)) - x

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 20, normalized size = 1.00 x+e(10x2+25e8)log(x2)e8

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-20*x**2*ln(x**2)+50*exp(4)**2-20*x**2)*exp((25*exp(4)**2-10*x**2)*ln(x**2)/exp(4)**2)-x*exp(4)**2
)/x/exp(4)**2,x)

[Out]

-x + exp((-10*x**2 + 25*exp(8))*exp(-8)*log(x**2))

________________________________________________________________________________________