Optimal. Leaf size=20 \[ -x+\left (x^2\right )^{5 \left (5-\frac {2 x^2}{e^8}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^8 x+\left (x^2\right )^{\frac {25 e^8-10 x^2}{e^8}} \left (50 e^8-20 x^2-20 x^2 \log \left (x^2\right )\right )}{e^8 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-e^8 x+\left (x^2\right )^{\frac {25 e^8-10 x^2}{e^8}} \left (50 e^8-20 x^2-20 x^2 \log \left (x^2\right )\right )}{x} \, dx}{e^8}\\ &=\frac {\int \left (-e^8-10 x^{49} \left (x^2\right )^{-\frac {10 x^2}{e^8}} \left (-5 e^8+2 x^2+2 x^2 \log \left (x^2\right )\right )\right ) \, dx}{e^8}\\ &=-x-\frac {10 \int x^{49} \left (x^2\right )^{-\frac {10 x^2}{e^8}} \left (-5 e^8+2 x^2+2 x^2 \log \left (x^2\right )\right ) \, dx}{e^8}\\ &=-x-\frac {5 \operatorname {Subst}\left (\int x^{24-\frac {10 x}{e^8}} \left (-5 e^8+2 x+2 x \log (x)\right ) \, dx,x,x^2\right )}{e^8}\\ &=-x-\frac {5 \operatorname {Subst}\left (\int \left (-5 e^8 x^{24-\frac {10 x}{e^8}}+2 x^{25-\frac {10 x}{e^8}}+2 x^{25-\frac {10 x}{e^8}} \log (x)\right ) \, dx,x,x^2\right )}{e^8}\\ &=-x+25 \operatorname {Subst}\left (\int x^{24-\frac {10 x}{e^8}} \, dx,x,x^2\right )-\frac {10 \operatorname {Subst}\left (\int x^{25-\frac {10 x}{e^8}} \, dx,x,x^2\right )}{e^8}-\frac {10 \operatorname {Subst}\left (\int x^{25-\frac {10 x}{e^8}} \log (x) \, dx,x,x^2\right )}{e^8}\\ &=-x+25 \operatorname {Subst}\left (\int x^{24-\frac {10 x}{e^8}} \, dx,x,x^2\right )-\frac {10 \operatorname {Subst}\left (\int x^{25-\frac {10 x}{e^8}} \, dx,x,x^2\right )}{e^8}+\frac {10 \operatorname {Subst}\left (\int \frac {\int x^{25-\frac {10 x}{e^8}} \, dx}{x} \, dx,x,x^2\right )}{e^8}-\frac {\left (10 \log \left (x^2\right )\right ) \operatorname {Subst}\left (\int x^{25-\frac {10 x}{e^8}} \, dx,x,x^2\right )}{e^8}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 0.90 \begin {gather*} -x+\left (x^2\right )^{25-\frac {10 x^2}{e^8}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 44, normalized size = 2.20 \begin {gather*} -\frac {{\left (x^{2}\right )}^{5 \, {\left (2 \, x^{2} - 5 \, e^{8}\right )} e^{\left (-8\right )}} x - 1}{{\left (x^{2}\right )}^{5 \, {\left (2 \, x^{2} - 5 \, e^{8}\right )} e^{\left (-8\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 18, normalized size = 0.90
method | result | size |
risch | \(\left (x^{2}\right )^{25-10 x^{2} {\mathrm e}^{-8}}-x\) | \(18\) |
norman | \(\left ({\mathrm e}^{4} {\mathrm e}^{\left (25 \,{\mathrm e}^{8}-10 x^{2}\right ) \ln \left (x^{2}\right ) {\mathrm e}^{-8}}-x \,{\mathrm e}^{4}\right ) {\mathrm e}^{-4}\) | \(37\) |
default | \({\mathrm e}^{-8} \left ({\mathrm e}^{8} {\mathrm e}^{\left (25 \,{\mathrm e}^{8}-10 x^{2}\right ) \ln \left (x^{2}\right ) {\mathrm e}^{-8}}-x \,{\mathrm e}^{8}\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 25, normalized size = 1.25 \begin {gather*} {\left (x^{50} e^{\left (-20 \, x^{2} e^{\left (-8\right )} \log \relax (x) + 8\right )} - x e^{8}\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.28, size = 21, normalized size = 1.05 \begin {gather*} \frac {x^{50}}{{\left (x^2\right )}^{10\,x^2\,{\mathrm {e}}^{-8}}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 1.00 \begin {gather*} - x + e^{\frac {\left (- 10 x^{2} + 25 e^{8}\right ) \log {\left (x^{2} \right )}}{e^{8}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________