3.17.77 e1+2x+x24x2(1x4x2)+4x2log(2)+(2e1+2x+x24x2x2+2x2log(2))log(ee2e1+2x+x24x2log(2))2e1+2x+x24x2x22x2log(2)dx

Optimal. Leaf size=36 12xxlog(ee2e(1+x)24x2log(2))

________________________________________________________________________________________

Rubi [F]  time = 2.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e1+2x+x24x2(1x4x2)+4x2log(2)+(2e1+2x+x24x2x2+2x2log(2))log(ee2e1+2x+x24x2log(2))2e1+2x+x24x2x22x2log(2)dx

Verification is not applicable to the result.

[In]

Int[(E^((1 + 2*x + x^2)/(4*x^2))*(-1 - x - 4*x^2) + 4*x^2*Log[2] + (-2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 + 2*x^2
*Log[2])*Log[E^E^2/(E^((1 + 2*x + x^2)/(4*x^2)) - Log[2])])/(2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 - 2*x^2*Log[2])
,x]

[Out]

1/(2*x) - 2*x - Log[x]/2 - x*Log[E^E^2/(E^((1 + x)^2/(4*x^2)) - Log[2])] - (Log[2]*Defer[Int][1/(x^2*(E^((1 +
x)^2/(4*x^2)) - Log[2])), x])/2 + Defer[Int][E^((1 + x)^2/(4*x^2))/(x^2*(E^((1 + x)^2/(4*x^2)) - Log[2])), x]/
2 - (Log[2]*Defer[Int][1/(x*(E^((1 + x)^2/(4*x^2)) - Log[2])), x])/2 + Defer[Int][E^((1 + x)^2/(4*x^2))/(x*(E^
((1 + x)^2/(4*x^2)) - Log[2])), x]/2

Rubi steps

integral=(e(1+x)24x2(1+x+4x2)+x2log(16)2x2(e(1+x)24x2log(2))log(ee2e(1+x)24x2log(2)))dx=12e(1+x)24x2(1+x+4x2)+x2log(16)x2(e(1+x)24x2log(2))dxlog(ee2e(1+x)24x2log(2))dx=xlog(ee2e(1+x)24x2log(2))+12(1x4x2x2(1+x)log(2)x2(e(1+x)24x2log(2)))dx+e(1+x)24x2(1+x)2x2(e(1+x)24x2log(2))dx=xlog(ee2e(1+x)24x2log(2))+121x4x2x2dx+12e(1+x)24x2(1+x)x2(e(1+x)24x2log(2))dx12log(2)1+xx2(e(1+x)24x2log(2))dx=xlog(ee2e(1+x)24x2log(2))+12(41x21x)dx+12(e(1+x)24x2x2(e(1+x)24x2log(2))+e(1+x)24x2x(e(1+x)24x2log(2)))dx12log(2)(1x2(e(1+x)24x2log(2))+1x(e(1+x)24x2log(2)))dx=12x2xlog(x)2xlog(ee2e(1+x)24x2log(2))+12e(1+x)24x2x2(e(1+x)24x2log(2))dx+12e(1+x)24x2x(e(1+x)24x2log(2))dx12log(2)1x2(e(1+x)24x2log(2))dx12log(2)1x(e(1+x)24x2log(2))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 30, normalized size = 0.83 x(2+e2+log(1e(1+x)24x2log(2)))

Antiderivative was successfully verified.

[In]

Integrate[(E^((1 + 2*x + x^2)/(4*x^2))*(-1 - x - 4*x^2) + 4*x^2*Log[2] + (-2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 +
 2*x^2*Log[2])*Log[E^E^2/(E^((1 + 2*x + x^2)/(4*x^2)) - Log[2])])/(2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 - 2*x^2*L
og[2]),x]

[Out]

-(x*(2 + E^2 + Log[(E^((1 + x)^2/(4*x^2)) - Log[2])^(-1)]))

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 33, normalized size = 0.92 xlog(e(e2)e(x2+2x+14x2)log(2))2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"fricas")

[Out]

-x*log(e^(e^2)/(e^(1/4*(x^2 + 2*x + 1)/x^2) - log(2))) - 2*x

________________________________________________________________________________________

giac [A]  time = 1.52, size = 31, normalized size = 0.86 xe2+xlog(e(x2+2x+14x2)log(2))2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"giac")

[Out]

-x*e^2 + x*log(e^(1/4*(x^2 + 2*x + 1)/x^2) - log(2)) - 2*x

________________________________________________________________________________________

maple [A]  time = 0.28, size = 42, normalized size = 1.17




method result size



norman 2x2x2ln(ee2ex2+2x+14x2ln(2))x 42
default (2ln(ee2ex2+2x+14x2ln(2))2ln(ex2+2x+14x2ln(2))4)x2+2x2ln(ex2+2x+14x2ln(2))2x 88
risch xln(e(x+1)24x2+ln(2))(2iπcsgn(ie(x+1)24x2+ln(2))2+2iπcsgn(ie(x+1)24x2+ln(2))3+2iπ+2e2+4)x2 90



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*ln(2))*ln(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-ln(2)))+(-4*x^2-x-
1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*ln(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*ln(2)),x,method=_RETURNVERBOSE)

[Out]

(-2*x^2-x^2*ln(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-ln(2))))/x

________________________________________________________________________________________

maxima [A]  time = 1.07, size = 29, normalized size = 0.81 x(e2+2)+xlog(e(12x+14x2+14)log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"maxima")

[Out]

-x*(e^2 + 2) + x*log(e^(1/2/x + 1/4/x^2 + 1/4) - log(2))

________________________________________________________________________________________

mupad [B]  time = 1.63, size = 36, normalized size = 1.00 2xxe2xln(1ln(2)e1/x(e1x2)1/4e1/4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((x/2 + x^2/4 + 1/4)/x^2)*(x + 4*x^2 + 1) - 4*x^2*log(2) + log(exp(exp(2))/(exp((x/2 + x^2/4 + 1/4)/x
^2) - log(2)))*(2*x^2*exp((x/2 + x^2/4 + 1/4)/x^2) - 2*x^2*log(2)))/(2*x^2*exp((x/2 + x^2/4 + 1/4)/x^2) - 2*x^
2*log(2)),x)

[Out]

- 2*x - x*exp(2) - x*log(-1/(log(2) - exp(1/x)^(1/2)*exp(1/x^2)^(1/4)*exp(1/4)))

________________________________________________________________________________________

sympy [A]  time = 0.55, size = 32, normalized size = 0.89 xlog(ee2ex24+x2+14x2log(2))2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2*exp(1/4*(x**2+2*x+1)/x**2)+2*x**2*ln(2))*ln(exp(exp(2))/(exp(1/4*(x**2+2*x+1)/x**2)-ln(2))
)+(-4*x**2-x-1)*exp(1/4*(x**2+2*x+1)/x**2)+4*x**2*ln(2))/(2*x**2*exp(1/4*(x**2+2*x+1)/x**2)-2*x**2*ln(2)),x)

[Out]

-x*log(exp(exp(2))/(exp((x**2/4 + x/2 + 1/4)/x**2) - log(2))) - 2*x

________________________________________________________________________________________