3.17.77
Optimal. Leaf size=36
________________________________________________________________________________________
Rubi [F] time = 2.90, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((1 + 2*x + x^2)/(4*x^2))*(-1 - x - 4*x^2) + 4*x^2*Log[2] + (-2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 + 2*x^2
*Log[2])*Log[E^E^2/(E^((1 + 2*x + x^2)/(4*x^2)) - Log[2])])/(2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 - 2*x^2*Log[2])
,x]
[Out]
1/(2*x) - 2*x - Log[x]/2 - x*Log[E^E^2/(E^((1 + x)^2/(4*x^2)) - Log[2])] - (Log[2]*Defer[Int][1/(x^2*(E^((1 +
x)^2/(4*x^2)) - Log[2])), x])/2 + Defer[Int][E^((1 + x)^2/(4*x^2))/(x^2*(E^((1 + x)^2/(4*x^2)) - Log[2])), x]/
2 - (Log[2]*Defer[Int][1/(x*(E^((1 + x)^2/(4*x^2)) - Log[2])), x])/2 + Defer[Int][E^((1 + x)^2/(4*x^2))/(x*(E^
((1 + x)^2/(4*x^2)) - Log[2])), x]/2
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 30, normalized size = 0.83
Antiderivative was successfully verified.
[In]
Integrate[(E^((1 + 2*x + x^2)/(4*x^2))*(-1 - x - 4*x^2) + 4*x^2*Log[2] + (-2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 +
2*x^2*Log[2])*Log[E^E^2/(E^((1 + 2*x + x^2)/(4*x^2)) - Log[2])])/(2*E^((1 + 2*x + x^2)/(4*x^2))*x^2 - 2*x^2*L
og[2]),x]
[Out]
-(x*(2 + E^2 + Log[(E^((1 + x)^2/(4*x^2)) - Log[2])^(-1)]))
________________________________________________________________________________________
fricas [A] time = 0.73, size = 33, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"fricas")
[Out]
-x*log(e^(e^2)/(e^(1/4*(x^2 + 2*x + 1)/x^2) - log(2))) - 2*x
________________________________________________________________________________________
giac [A] time = 1.52, size = 31, normalized size = 0.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"giac")
[Out]
-x*e^2 + x*log(e^(1/4*(x^2 + 2*x + 1)/x^2) - log(2)) - 2*x
________________________________________________________________________________________
maple [A] time = 0.28, size = 42, normalized size = 1.17
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*ln(2))*ln(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-ln(2)))+(-4*x^2-x-
1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*ln(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*ln(2)),x,method=_RETURNVERBOSE)
[Out]
(-2*x^2-x^2*ln(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-ln(2))))/x
________________________________________________________________________________________
maxima [A] time = 1.07, size = 29, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x^2*exp(1/4*(x^2+2*x+1)/x^2)+2*x^2*log(2))*log(exp(exp(2))/(exp(1/4*(x^2+2*x+1)/x^2)-log(2)))+(
-4*x^2-x-1)*exp(1/4*(x^2+2*x+1)/x^2)+4*x^2*log(2))/(2*x^2*exp(1/4*(x^2+2*x+1)/x^2)-2*x^2*log(2)),x, algorithm=
"maxima")
[Out]
-x*(e^2 + 2) + x*log(e^(1/2/x + 1/4/x^2 + 1/4) - log(2))
________________________________________________________________________________________
mupad [B] time = 1.63, size = 36, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((x/2 + x^2/4 + 1/4)/x^2)*(x + 4*x^2 + 1) - 4*x^2*log(2) + log(exp(exp(2))/(exp((x/2 + x^2/4 + 1/4)/x
^2) - log(2)))*(2*x^2*exp((x/2 + x^2/4 + 1/4)/x^2) - 2*x^2*log(2)))/(2*x^2*exp((x/2 + x^2/4 + 1/4)/x^2) - 2*x^
2*log(2)),x)
[Out]
- 2*x - x*exp(2) - x*log(-1/(log(2) - exp(1/x)^(1/2)*exp(1/x^2)^(1/4)*exp(1/4)))
________________________________________________________________________________________
sympy [A] time = 0.55, size = 32, normalized size = 0.89
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x**2*exp(1/4*(x**2+2*x+1)/x**2)+2*x**2*ln(2))*ln(exp(exp(2))/(exp(1/4*(x**2+2*x+1)/x**2)-ln(2))
)+(-4*x**2-x-1)*exp(1/4*(x**2+2*x+1)/x**2)+4*x**2*ln(2))/(2*x**2*exp(1/4*(x**2+2*x+1)/x**2)-2*x**2*ln(2)),x)
[Out]
-x*log(exp(exp(2))/(exp((x**2/4 + x/2 + 1/4)/x**2) - log(2))) - 2*x
________________________________________________________________________________________