Optimal. Leaf size=36 \[ 1-2 x-x \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1+2 x+x^2}{4 x^2}} \left (-1-x-4 x^2\right )+4 x^2 \log (2)+\left (-2 e^{\frac {1+2 x+x^2}{4 x^2}} x^2+2 x^2 \log (2)\right ) \log \left (\frac {e^{e^2}}{e^{\frac {1+2 x+x^2}{4 x^2}}-\log (2)}\right )}{2 e^{\frac {1+2 x+x^2}{4 x^2}} x^2-2 x^2 \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-e^{\frac {(1+x)^2}{4 x^2}} \left (1+x+4 x^2\right )+x^2 \log (16)}{2 x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}-\log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {-e^{\frac {(1+x)^2}{4 x^2}} \left (1+x+4 x^2\right )+x^2 \log (16)}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx-\int \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right ) \, dx\\ &=-x \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )+\frac {1}{2} \int \left (\frac {-1-x-4 x^2}{x^2}-\frac {(1+x) \log (2)}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}\right ) \, dx+\int \frac {e^{\frac {(1+x)^2}{4 x^2}} (1+x)}{2 x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx\\ &=-x \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )+\frac {1}{2} \int \frac {-1-x-4 x^2}{x^2} \, dx+\frac {1}{2} \int \frac {e^{\frac {(1+x)^2}{4 x^2}} (1+x)}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx-\frac {1}{2} \log (2) \int \frac {1+x}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx\\ &=-x \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )+\frac {1}{2} \int \left (-4-\frac {1}{x^2}-\frac {1}{x}\right ) \, dx+\frac {1}{2} \int \left (\frac {e^{\frac {(1+x)^2}{4 x^2}}}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}+\frac {e^{\frac {(1+x)^2}{4 x^2}}}{x \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}\right ) \, dx-\frac {1}{2} \log (2) \int \left (\frac {1}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}+\frac {1}{x \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )}\right ) \, dx\\ &=\frac {1}{2 x}-2 x-\frac {\log (x)}{2}-x \log \left (\frac {e^{e^2}}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )+\frac {1}{2} \int \frac {e^{\frac {(1+x)^2}{4 x^2}}}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx+\frac {1}{2} \int \frac {e^{\frac {(1+x)^2}{4 x^2}}}{x \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx-\frac {1}{2} \log (2) \int \frac {1}{x^2 \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx-\frac {1}{2} \log (2) \int \frac {1}{x \left (e^{\frac {(1+x)^2}{4 x^2}}-\log (2)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 30, normalized size = 0.83 \begin {gather*} -x \left (2+e^2+\log \left (\frac {1}{e^{\frac {(1+x)^2}{4 x^2}}-\log (2)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 33, normalized size = 0.92 \begin {gather*} -x \log \left (\frac {e^{\left (e^{2}\right )}}{e^{\left (\frac {x^{2} + 2 \, x + 1}{4 \, x^{2}}\right )} - \log \relax (2)}\right ) - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.52, size = 31, normalized size = 0.86 \begin {gather*} -x e^{2} + x \log \left (e^{\left (\frac {x^{2} + 2 \, x + 1}{4 \, x^{2}}\right )} - \log \relax (2)\right ) - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 42, normalized size = 1.17
method | result | size |
norman | \(\frac {-2 x^{2}-x^{2} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{2}}}{{\mathrm e}^{\frac {x^{2}+2 x +1}{4 x^{2}}}-\ln \relax (2)}\right )}{x}\) | \(42\) |
default | \(\frac {\left (-2 \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{2}}}{{\mathrm e}^{\frac {x^{2}+2 x +1}{4 x^{2}}}-\ln \relax (2)}\right )-2 \ln \left ({\mathrm e}^{\frac {x^{2}+2 x +1}{4 x^{2}}}-\ln \relax (2)\right )-4\right ) x^{2}+2 x^{2} \ln \left ({\mathrm e}^{\frac {x^{2}+2 x +1}{4 x^{2}}}-\ln \relax (2)\right )}{2 x}\) | \(88\) |
risch | \(x \ln \left (-{\mathrm e}^{\frac {\left (x +1\right )^{2}}{4 x^{2}}}+\ln \relax (2)\right )-\frac {\left (-2 i \pi \mathrm {csgn}\left (\frac {i}{-{\mathrm e}^{\frac {\left (x +1\right )^{2}}{4 x^{2}}}+\ln \relax (2)}\right )^{2}+2 i \pi \mathrm {csgn}\left (\frac {i}{-{\mathrm e}^{\frac {\left (x +1\right )^{2}}{4 x^{2}}}+\ln \relax (2)}\right )^{3}+2 i \pi +2 \,{\mathrm e}^{2}+4\right ) x}{2}\) | \(90\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.07, size = 29, normalized size = 0.81 \begin {gather*} -x {\left (e^{2} + 2\right )} + x \log \left (e^{\left (\frac {1}{2 \, x} + \frac {1}{4 \, x^{2}} + \frac {1}{4}\right )} - \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.63, size = 36, normalized size = 1.00 \begin {gather*} -2\,x-x\,{\mathrm {e}}^2-x\,\ln \left (-\frac {1}{\ln \relax (2)-\sqrt {{\mathrm {e}}^{1/x}}\,{\left ({\mathrm {e}}^{\frac {1}{x^2}}\right )}^{1/4}\,{\mathrm {e}}^{1/4}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 32, normalized size = 0.89 \begin {gather*} - x \log {\left (\frac {e^{e^{2}}}{e^{\frac {\frac {x^{2}}{4} + \frac {x}{2} + \frac {1}{4}}{x^{2}}} - \log {\relax (2 )}} \right )} - 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________