3.17.80
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 74, normalized size of antiderivative = 3.36,
number of steps used = 4, number of rules used = 2, integrand size = 135, = 0.015, Rules used
= {6, 2074}
Antiderivative was successfully verified.
[In]
Int[(-432 - 288*x - 81*x^3 + 3*E^12*x^3 - 81*x^4 - 27*x^5 - 3*x^6 + E^8*(-27*x^3 - 9*x^4) + E^4*(144 + 81*x^3
+ 54*x^4 + 9*x^5))/(-27*x^3 + E^12*x^3 - 27*x^4 - 9*x^5 - x^6 + E^8*(-9*x^3 - 3*x^4) + E^4*(27*x^3 + 18*x^4 +
3*x^5)),x]
[Out]
-72/((3 - E^4)^2*x^2) + 144/((3 - E^4)^3*x) + 3*x - 72/((3 - E^4)^2*(3 - E^4 + x)^2) - 144/((3 - E^4)^3*(3 - E
^4 + x))
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 41, normalized size = 1.86
Antiderivative was successfully verified.
[In]
Integrate[(-432 - 288*x - 81*x^3 + 3*E^12*x^3 - 81*x^4 - 27*x^5 - 3*x^6 + E^8*(-27*x^3 - 9*x^4) + E^4*(144 + 8
1*x^3 + 54*x^4 + 9*x^5))/(-27*x^3 + E^12*x^3 - 27*x^4 - 9*x^5 - x^6 + E^8*(-9*x^3 - 3*x^4) + E^4*(27*x^3 + 18*
x^4 + 3*x^5)),x]
[Out]
(3*(-24 + (-3 + E^4)^2*x^3 - 2*(-3 + E^4)*x^4 + x^5))/(x^2*(3 - E^4 + x)^2)
________________________________________________________________________________________
fricas [B] time = 0.67, size = 71, normalized size = 3.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^3*exp(4)^3+(-9*x^4-27*x^3)*exp(4)^2+(9*x^5+54*x^4+81*x^3+144)*exp(4)-3*x^6-27*x^5-81*x^4-81*x^3
-288*x-432)/(x^3*exp(4)^3+(-3*x^4-9*x^3)*exp(4)^2+(3*x^5+18*x^4+27*x^3)*exp(4)-x^6-9*x^5-27*x^4-27*x^3),x, alg
orithm="fricas")
[Out]
3*(x^5 + 6*x^4 + x^3*e^8 + 9*x^3 - 2*(x^4 + 3*x^3)*e^4 - 24)/(x^4 + 6*x^3 + x^2*e^8 + 9*x^2 - 2*(x^3 + 3*x^2)*
e^4)
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^3*exp(4)^3+(-9*x^4-27*x^3)*exp(4)^2+(9*x^5+54*x^4+81*x^3+144)*exp(4)-3*x^6-27*x^5-81*x^4-81*x^3
-288*x-432)/(x^3*exp(4)^3+(-3*x^4-9*x^3)*exp(4)^2+(3*x^5+18*x^4+27*x^3)*exp(4)-x^6-9*x^5-27*x^4-27*x^3),x, alg
orithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [A] time = 0.17, size = 31, normalized size = 1.41
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
gosper |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((3*x^3*exp(4)^3+(-9*x^4-27*x^3)*exp(4)^2+(9*x^5+54*x^4+81*x^3+144)*exp(4)-3*x^6-27*x^5-81*x^4-81*x^3-288*x
-432)/(x^3*exp(4)^3+(-3*x^4-9*x^3)*exp(4)^2+(3*x^5+18*x^4+27*x^3)*exp(4)-x^6-9*x^5-27*x^4-27*x^3),x,method=_RE
TURNVERBOSE)
[Out]
3*x-72/x^2/(exp(8)-2*x*exp(4)+x^2-6*exp(4)+6*x+9)
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^3*exp(4)^3+(-9*x^4-27*x^3)*exp(4)^2+(9*x^5+54*x^4+81*x^3+144)*exp(4)-3*x^6-27*x^5-81*x^4-81*x^3
-288*x-432)/(x^3*exp(4)^3+(-3*x^4-9*x^3)*exp(4)^2+(3*x^5+18*x^4+27*x^3)*exp(4)-x^6-9*x^5-27*x^4-27*x^3),x, alg
orithm="maxima")
[Out]
3*x - 72/(x^4 - 2*x^3*(e^4 - 3) + x^2*(e^8 - 6*e^4 + 9))
________________________________________________________________________________________
mupad [B] time = 0.18, size = 42, normalized size = 1.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((288*x + exp(8)*(27*x^3 + 9*x^4) - 3*x^3*exp(12) - exp(4)*(81*x^3 + 54*x^4 + 9*x^5 + 144) + 81*x^3 + 81*x^
4 + 27*x^5 + 3*x^6 + 432)/(exp(8)*(9*x^3 + 3*x^4) - x^3*exp(12) - exp(4)*(27*x^3 + 18*x^4 + 3*x^5) + 27*x^3 +
27*x^4 + 9*x^5 + x^6),x)
[Out]
3*x - (x^3*(18*exp(4) - 3*exp(8) + 3*(exp(4) - 3)^2 - 27) + 72)/(x^2*(x - exp(4) + 3)^2)
________________________________________________________________________________________
sympy [A] time = 0.84, size = 31, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x**3*exp(4)**3+(-9*x**4-27*x**3)*exp(4)**2+(9*x**5+54*x**4+81*x**3+144)*exp(4)-3*x**6-27*x**5-81*
x**4-81*x**3-288*x-432)/(x**3*exp(4)**3+(-3*x**4-9*x**3)*exp(4)**2+(3*x**5+18*x**4+27*x**3)*exp(4)-x**6-9*x**5
-27*x**4-27*x**3),x)
[Out]
3*x - 72/(x**4 + x**3*(6 - 2*exp(4)) + x**2*(-6*exp(4) + 9 + exp(8)))
________________________________________________________________________________________