Optimal. Leaf size=22 \[ 3 x-\frac {8}{\left (x+\frac {1}{3} x \left (-e^4+x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 74, normalized size of antiderivative = 3.36, number of steps used = 4, number of rules used = 2, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6, 2074} \begin {gather*} -\frac {72}{\left (3-e^4\right )^2 x^2}+3 x-\frac {144}{\left (3-e^4\right )^3 \left (x-e^4+3\right )}-\frac {72}{\left (3-e^4\right )^2 \left (x-e^4+3\right )^2}+\frac {144}{\left (3-e^4\right )^3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-432-288 x-81 x^3+3 e^{12} x^3-81 x^4-27 x^5-3 x^6+e^8 \left (-27 x^3-9 x^4\right )+e^4 \left (144+81 x^3+54 x^4+9 x^5\right )}{\left (-27+e^{12}\right ) x^3-27 x^4-9 x^5-x^6+e^8 \left (-9 x^3-3 x^4\right )+e^4 \left (27 x^3+18 x^4+3 x^5\right )} \, dx\\ &=\int \frac {-432-288 x+\left (-81+3 e^{12}\right ) x^3-81 x^4-27 x^5-3 x^6+e^8 \left (-27 x^3-9 x^4\right )+e^4 \left (144+81 x^3+54 x^4+9 x^5\right )}{\left (-27+e^{12}\right ) x^3-27 x^4-9 x^5-x^6+e^8 \left (-9 x^3-3 x^4\right )+e^4 \left (27 x^3+18 x^4+3 x^5\right )} \, dx\\ &=\int \left (3-\frac {144}{\left (-3+e^4\right )^2 \left (-3+e^4-x\right )^3}-\frac {144}{\left (-3+e^4\right )^3 \left (-3+e^4-x\right )^2}+\frac {144}{\left (-3+e^4\right )^2 x^3}+\frac {144}{\left (-3+e^4\right )^3 x^2}\right ) \, dx\\ &=-\frac {72}{\left (3-e^4\right )^2 x^2}+\frac {144}{\left (3-e^4\right )^3 x}+3 x-\frac {72}{\left (3-e^4\right )^2 \left (3-e^4+x\right )^2}-\frac {144}{\left (3-e^4\right )^3 \left (3-e^4+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 41, normalized size = 1.86 \begin {gather*} \frac {3 \left (-24+\left (-3+e^4\right )^2 x^3-2 \left (-3+e^4\right ) x^4+x^5\right )}{x^2 \left (3-e^4+x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 71, normalized size = 3.23 \begin {gather*} \frac {3 \, {\left (x^{5} + 6 \, x^{4} + x^{3} e^{8} + 9 \, x^{3} - 2 \, {\left (x^{4} + 3 \, x^{3}\right )} e^{4} - 24\right )}}{x^{4} + 6 \, x^{3} + x^{2} e^{8} + 9 \, x^{2} - 2 \, {\left (x^{3} + 3 \, x^{2}\right )} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 31, normalized size = 1.41
method | result | size |
risch | \(3 x -\frac {72}{x^{2} \left ({\mathrm e}^{8}-2 x \,{\mathrm e}^{4}+x^{2}-6 \,{\mathrm e}^{4}+6 x +9\right )}\) | \(31\) |
norman | \(\frac {-72+\left (-9 \,{\mathrm e}^{8}+54 \,{\mathrm e}^{4}-81\right ) x^{3}+\left (6 \,{\mathrm e}^{12}-54 \,{\mathrm e}^{8}+162 \,{\mathrm e}^{4}-162\right ) x^{2}+3 x^{5}}{x^{2} \left ({\mathrm e}^{4}-x -3\right )^{2}}\) | \(59\) |
gosper | \(\frac {6 x^{2} {\mathrm e}^{12}-9 x^{3} {\mathrm e}^{8}+3 x^{5}-54 x^{2} {\mathrm e}^{8}+54 x^{3} {\mathrm e}^{4}+162 x^{2} {\mathrm e}^{4}-81 x^{3}-162 x^{2}-72}{x^{2} \left ({\mathrm e}^{8}-2 x \,{\mathrm e}^{4}+x^{2}-6 \,{\mathrm e}^{4}+6 x +9\right )}\) | \(85\) |
default | \(3 x -\frac {48 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+\left (-3 \,{\mathrm e}^{4}+9\right ) \textit {\_Z}^{2}+\left (-18 \,{\mathrm e}^{4}+3 \,{\mathrm e}^{8}+27\right ) \textit {\_Z} -27 \,{\mathrm e}^{4}+9 \,{\mathrm e}^{8}-{\mathrm e}^{12}+27\right )}{\sum }\frac {\left (4374-1458 \textit {\_R} \,{\mathrm e}^{4}+135 \textit {\_R} \,{\mathrm e}^{16}+1215 \textit {\_R} \,{\mathrm e}^{8}-540 \textit {\_R} \,{\mathrm e}^{12}+\textit {\_R} \,{\mathrm e}^{24}-18 \textit {\_R} \,{\mathrm e}^{20}-10206 \,{\mathrm e}^{4}+1890 \,{\mathrm e}^{16}+10206 \,{\mathrm e}^{8}-5670 \,{\mathrm e}^{12}+42 \,{\mathrm e}^{24}-378 \,{\mathrm e}^{20}-2 \,{\mathrm e}^{28}+729 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{9+{\mathrm e}^{8}-2 \textit {\_R} \,{\mathrm e}^{4}+\textit {\_R}^{2}-6 \,{\mathrm e}^{4}+6 \textit {\_R}}\right )}{\left (27 \,{\mathrm e}^{4}+{\mathrm e}^{12}-9 \,{\mathrm e}^{8}-27\right )^{3}}-\frac {3 \left (6480 \,{\mathrm e}^{16}+48 \,{\mathrm e}^{24}-864 \,{\mathrm e}^{20}-69984 \,{\mathrm e}^{4}+58320 \,{\mathrm e}^{8}-25920 \,{\mathrm e}^{12}+34992\right )}{\left (27 \,{\mathrm e}^{4}+{\mathrm e}^{12}-9 \,{\mathrm e}^{8}-27\right )^{3} x}-\frac {3 \left (-45360 \,{\mathrm e}^{16}-1008 \,{\mathrm e}^{24}+9072 \,{\mathrm e}^{20}+48 \,{\mathrm e}^{28}+244944 \,{\mathrm e}^{4}-244944 \,{\mathrm e}^{8}+136080 \,{\mathrm e}^{12}-104976\right )}{2 \left (27 \,{\mathrm e}^{4}+{\mathrm e}^{12}-9 \,{\mathrm e}^{8}-27\right )^{3} x^{2}}\) | \(248\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.50 \begin {gather*} 3 \, x - \frac {72}{x^{4} - 2 \, x^{3} {\left (e^{4} - 3\right )} + x^{2} {\left (e^{8} - 6 \, e^{4} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 42, normalized size = 1.91 \begin {gather*} 3\,x-\frac {\left (18\,{\mathrm {e}}^4-3\,{\mathrm {e}}^8+3\,{\left ({\mathrm {e}}^4-3\right )}^2-27\right )\,x^3+72}{x^2\,{\left (x-{\mathrm {e}}^4+3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 31, normalized size = 1.41 \begin {gather*} 3 x - \frac {72}{x^{4} + x^{3} \left (6 - 2 e^{4}\right ) + x^{2} \left (- 6 e^{4} + 9 + e^{8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________