3.17.79 1+e2x+2(1+e2x)2e41+e2xdx

Optimal. Leaf size=22 1e5+e2(3+log(1+e2x))+x

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.77, number of steps used = 2, number of rules used = 1, integrand size = 31, number of rulesintegrand size = 0.032, Rules used = {1586} x2e2+(12e4)x

Antiderivative was successfully verified.

[In]

Int[(-1 + E^2*x + (2*(-1 + E^2*x)^2)/E^4)/(-1 + E^2*x),x]

[Out]

(1 - 2/E^4)*x + x^2/E^2

Rule 1586

Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]

Rubi steps

integral=(12e4+2xe2)dx=(12e4)x+x2e2

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 15, normalized size = 0.68 x2xe4+x2e2

Antiderivative was successfully verified.

[In]

Integrate[(-1 + E^2*x + (2*(-1 + E^2*x)^2)/E^4)/(-1 + E^2*x),x]

[Out]

x - (2*x)/E^4 + x^2/E^2

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 17, normalized size = 0.77 (x2e2+xe42x)e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(2)*exp(2*log(exp(2)*x-1)-6)+exp(2)*x-1)/(exp(2)*x-1),x, algorithm="fricas")

[Out]

(x^2*e^2 + x*e^4 - 2*x)*e^(-4)

________________________________________________________________________________________

giac [A]  time = 0.41, size = 17, normalized size = 0.77 (x2e2+xe42x)e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(2)*exp(2*log(exp(2)*x-1)-6)+exp(2)*x-1)/(exp(2)*x-1),x, algorithm="giac")

[Out]

(x^2*e^2 + x*e^4 - 2*x)*e^(-4)

________________________________________________________________________________________

maple [A]  time = 0.30, size = 14, normalized size = 0.64




method result size



risch 2xe4+x2e2+x 14
default x+e2ln(e2x1)6 15
norman e4e6x2(2e2e6)e6x 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*exp(2)*exp(2*ln(exp(2)*x-1)-6)+exp(2)*x-1)/(exp(2)*x-1),x,method=_RETURNVERBOSE)

[Out]

-2*x*exp(-4)+x^2*exp(-2)+x

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 16, normalized size = 0.73 (x2e2+x(e42))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(2)*exp(2*log(exp(2)*x-1)-6)+exp(2)*x-1)/(exp(2)*x-1),x, algorithm="maxima")

[Out]

(x^2*e^2 + x*(e^4 - 2))*e^(-4)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 12, normalized size = 0.55 x(xe22e4+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*exp(2) + 2*exp(2*log(x*exp(2) - 1) - 6)*exp(2) - 1)/(x*exp(2) - 1),x)

[Out]

x*(x*exp(-2) - 2*exp(-4) + 1)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 15, normalized size = 0.68 x2e2+x(2+e4)e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(2)*exp(2*ln(exp(2)*x-1)-6)+exp(2)*x-1)/(exp(2)*x-1),x)

[Out]

x**2*exp(-2) + x*(-2 + exp(4))*exp(-4)

________________________________________________________________________________________