3.17.84 15(8160ex+40e2x+20x+30x2)dx

Optimal. Leaf size=26 4(5+(4+ex)2+2x5+12x(x+x2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 2, integrand size = 26, number of rulesintegrand size = 0.077, Rules used = {12, 2194} 2x3+2x2+8x532ex+4e2x

Antiderivative was successfully verified.

[In]

Int[(8 - 160*E^x + 40*E^(2*x) + 20*x + 30*x^2)/5,x]

[Out]

-32*E^x + 4*E^(2*x) + (8*x)/5 + 2*x^2 + 2*x^3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=15(8160ex+40e2x+20x+30x2)dx=8x5+2x2+2x3+8e2xdx32exdx=32ex+4e2x+8x5+2x2+2x3

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 28, normalized size = 1.08 32ex+4e2x+8x5+2x2+2x3

Antiderivative was successfully verified.

[In]

Integrate[(8 - 160*E^x + 40*E^(2*x) + 20*x + 30*x^2)/5,x]

[Out]

-32*E^x + 4*E^(2*x) + (8*x)/5 + 2*x^2 + 2*x^3

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 24, normalized size = 0.92 2x3+2x2+85x+4e(2x)32ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(8*exp(x)^2-32*exp(x)+6*x^2+4*x+8/5,x, algorithm="fricas")

[Out]

2*x^3 + 2*x^2 + 8/5*x + 4*e^(2*x) - 32*e^x

________________________________________________________________________________________

giac [A]  time = 0.18, size = 24, normalized size = 0.92 2x3+2x2+85x+4e(2x)32ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(8*exp(x)^2-32*exp(x)+6*x^2+4*x+8/5,x, algorithm="giac")

[Out]

2*x^3 + 2*x^2 + 8/5*x + 4*e^(2*x) - 32*e^x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 25, normalized size = 0.96




method result size



default 8x5+2x2+2x3+4e2x32ex 25
norman 8x5+2x2+2x3+4e2x32ex 25
risch 8x5+2x2+2x3+4e2x32ex 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(8*exp(x)^2-32*exp(x)+6*x^2+4*x+8/5,x,method=_RETURNVERBOSE)

[Out]

8/5*x+2*x^2+2*x^3+4*exp(x)^2-32*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 24, normalized size = 0.92 2x3+2x2+85x+4e(2x)32ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(8*exp(x)^2-32*exp(x)+6*x^2+4*x+8/5,x, algorithm="maxima")

[Out]

2*x^3 + 2*x^2 + 8/5*x + 4*e^(2*x) - 32*e^x

________________________________________________________________________________________

mupad [B]  time = 1.13, size = 24, normalized size = 0.92 8x5+4e2x32ex+2x2+2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4*x + 8*exp(2*x) - 32*exp(x) + 6*x^2 + 8/5,x)

[Out]

(8*x)/5 + 4*exp(2*x) - 32*exp(x) + 2*x^2 + 2*x^3

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 26, normalized size = 1.00 2x3+2x2+8x5+4e2x32ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(8*exp(x)**2-32*exp(x)+6*x**2+4*x+8/5,x)

[Out]

2*x**3 + 2*x**2 + 8*x/5 + 4*exp(2*x) - 32*exp(x)

________________________________________________________________________________________