3.17.85 38x+x22x33+x2dx

Optimal. Leaf size=19 2+xlog(e4+x2(3+x2))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 15, normalized size of antiderivative = 0.79, number of steps used = 3, number of rules used = 2, integrand size = 21, number of rulesintegrand size = 0.095, Rules used = {1810, 260} x2log(x2+3)+x

Antiderivative was successfully verified.

[In]

Int[(3 - 8*x + x^2 - 2*x^3)/(3 + x^2),x]

[Out]

x - x^2 - Log[3 + x^2]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 1810

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

integral=(12x2x3+x2)dx=xx22x3+x2dx=xx2log(3+x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 15, normalized size = 0.79 xx2log(3+x2)

Antiderivative was successfully verified.

[In]

Integrate[(3 - 8*x + x^2 - 2*x^3)/(3 + x^2),x]

[Out]

x - x^2 - Log[3 + x^2]

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 15, normalized size = 0.79 x2+xlog(x2+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^3+x^2-8*x+3)/(x^2+3),x, algorithm="fricas")

[Out]

-x^2 + x - log(x^2 + 3)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 15, normalized size = 0.79 x2+xlog(x2+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^3+x^2-8*x+3)/(x^2+3),x, algorithm="giac")

[Out]

-x^2 + x - log(x^2 + 3)

________________________________________________________________________________________

maple [A]  time = 0.30, size = 16, normalized size = 0.84




method result size



default xx2ln(x2+3) 16
norman xx2ln(x2+3) 16
risch xx2ln(x2+3) 16
meijerg 3arctan(x33)x2ln(1+x23)+3(2x332arctan(x33))2 49



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x^3+x^2-8*x+3)/(x^2+3),x,method=_RETURNVERBOSE)

[Out]

x-x^2-ln(x^2+3)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 15, normalized size = 0.79 x2+xlog(x2+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^3+x^2-8*x+3)/(x^2+3),x, algorithm="maxima")

[Out]

-x^2 + x - log(x^2 + 3)

________________________________________________________________________________________

mupad [B]  time = 1.07, size = 15, normalized size = 0.79 xln(x2+3)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(8*x - x^2 + 2*x^3 - 3)/(x^2 + 3),x)

[Out]

x - log(x^2 + 3) - x^2

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 10, normalized size = 0.53 x2+xlog(x2+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x**3+x**2-8*x+3)/(x**2+3),x)

[Out]

-x**2 + x - log(x**2 + 3)

________________________________________________________________________________________